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Range Constraint Algorithm
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At any instant of time k ∈ N
+, the distance between position

estimates of right and left foot INS cannot be greater than a
parameter known as foot-to-foot maximum separation (γ). Based
on this range constraint, we develop Centroid Method to fuse the
navigation information of right and left foot-mounted ZUPT aided
INS.



Centroid Method - Problem Formulation

◮ Define the unconstrained joint position estimate vector at
time instant k ∈ N
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Centroid Method - Problem Formulation

At any instant of time k ∈ N
+, following condition must hold:
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where γ ∈ R
+ is the foot-to-foot maximum separation

Hence, we can formulate the problem in constrained least squares
framework as:
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Centroid Method - Solution

In Lagrangian formulation with Lagrange multiplier λC :
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Centroid Method - Solution

The solution of equation (2) is
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The solution of equation (2) is
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Centroid Method - Solution

Substitute Eq. (5) and simplifying:
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Graphical Representation
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Figure: Graphical representation of unconstrained and constrained
position estimates



Alternate Problem Formulation

In the figure, the centre of the sphere
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Alternate Problem Formulation

Solution in Lagrangian framework is found to be:
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solution given by Eq. (11) and (12) reduces to the solution given
by Eq. (7) and Eq. (8) respectively.



Weighted Centroid Method

◮ Instead of defining the centroid as the midpoint of right and
left foot INS position estimates as in Eq. (13), we can make
use of the entries of error covariance matrix P, to define the
weighted centroid.

◮ Range constrained right and left foot position estimates given
by Eq. (11) and (12) is used as the pseudo-measurement in
complementary feedback Kalman Filter.



Centroid Method - Algorithm Description

If d̂k > γ, then execute the following steps.
◮ Calculate the pseudo-measurement for the position given by

Eq. (11) and Eq. (12), where p0 is given by Eq. (13) or as
explained in weighted centroid method.
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Centroid Method - Algorithm Description

◮ Kalman filter position pseudo-measurement update for left
foot INS:
1. Compute the Kalman gain:
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