
Data Collection Data Model Feature Extraction Classification

Classification of Vehicles Using
Magnetic Dipole Model

Prateek G V, Rajkumar V, Nijil K and K.V.S. Hari

prateek@ece.iisc.ernet.in, rajdbz@gmail.com, nijil@ece.iisc.ernet.in and hari@ece.iisc.ernet.in

http://ece.iisc.ernet.in/∼ssplab

Statistical Signal Processing Laboratory, Department of ECE

Indian Institute of Science, Bangalore, India.

IEEE TENCON 2012, Cebu, Philippines

21st November 2012

Funded by DIT-ASTECWireless Sensor Project, Department of Information Technology, Ministry of
Communications & Information Technology, Govt. of India.

http://ece.iisc.ernet.in/~ssplab


Data Collection Data Model Feature Extraction Classification

MOTIVATION FOR CLASSIFICATION OF VEHICLES

◮ One important requirement for a traffic management
system is the capability to detect the presence of a vehicle
and type of a vehicle (car, bus, truck, etc). Based on such
detection, statistics such as

◮ vehicle count
◮ traffic flow speed
◮ occupancy

◮ Induction loop and Video-Image are used most widely
technologies but they have a lot of disadvantages.

◮ Induction loops are big in size with difficulty in
maintenance.

◮ Video-Image based sensor are costly with big influence of
external light conditions.
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CLASSIFICATION OF VEHICLES USING MAGNETIC

SIGNATURES

◮ Passive magnetometers∗ that are capable of sensing the magnetic field
can be used. The motes having these sensors mounted on them can be
programmed with a vehicle detection algorithm†

◮ High level of flexibility in their deployment configuration and costs
less.

a. magnetic perturbations

b. AMR sensor

c. sensor readings

∗
Anisotropic Magnetoresistive(AMR) sensors detect the distortions of the earth’s magnetic field, which is

assumed to be uniform over a wide area on the scale of kilometers.
†
S.Y. Cheung and P. Varaiya, Traffic surveillance by wireless sensor networks, research note, University of

California, Berkeley,Jan 2007. http://www.its.berkeley.edu/publications/UCB/2007/PRR/
UCB-ITS-PRR-2007-4.pdf.
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DATA COLLECTION

◮ Data is collected using two different mechanism.

(a) Remote Controlled
Car

(b) Skate Board

Paths across which the HMC1502 sensor mounted on a TelosB wireless mote placed in a fiber casing, with either a
remote control car setup or skate board setup, was moved
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DATABASE - VEHICLE MAGNETIC SIGNATURES

Vehicle Magnetic Signature Database‡ grouped based on the length of the car
Car-type Type 1 Type 2 Type 3 Type 4

Car Length
(3.0-3.5) (3.5-4.0) (4.0-4.5) (>4.5)

(in meters)

Type of 1800(8) 11Corsa(2) 3Accent(1) 6Civic(1)
∗Car(n), 1Alto(2) 3i20(1) 2Cielo(1) 8Corolla(1)

where n 2Matiz(3) 5Figo(2) 6City(4) 3Elentra(2)

represents 3Santro(5) 3GetZ(2) 12Vento(1) 8Innova(2)

number of 1Omni(6) 3i10(4) 1SX4(2) 7Linea(1)

datasets 9Spark(1) 4Indica(6) 3Verna(1) 3Sonata(1)
4Nano(2) 7Palio(1) 1Esteem(2) 10Octiva(1)
1WagonR(4) 1Swift(2) 4Indigo(2) 10Laura(1)

Cars = 42 1Estillo(3) 1Zen(2) 1Dzire(1)

Sets = 89 9Beat(2) 3Ritz(1) 4Sumo(1)
13Reva(1) 5Fiesta(1)

6Petra(1)
14Logan(1)

Number of
87 67 53 27

Datasets
∗ Indicates the Car Manufacturer

1 - Maruti Suzuki; 2 - Daewoo; 3 - Hyundai; 4 - Tata Motors; 5 - Ford; 6 - Honda; 7 - Fiat; 8 - Toyota; 9 - Chevrolet; 10

- Skoda; 11 - Opel; 12 - Volkswagon; 13 - Mahindra; 14 - Renault.

‡
A. S. Bhat, A. K. Deshpande, K. G. Deshpande, and K. V. S. Hari, “Vehicle detection and classification using

magnetometer - data acquisition,” tech. rep., 2011.
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SAMPLE MAGNETIC SIGNATURES
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Type 1 − Alto

(e) Y-axis reading for Type 1 - Maruti
Alto
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Type 2 − Indica

(f) Y-axis reading for Type 2 - Tata Indica
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Type 3 − SX4

(g) Y-axis reading for Type 3 - Maruti

SX4
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Type 4 − Sonata

(h) Y-axis reading for Type 4 - Hyundai
Sonata

The Y-axis trajectories obtained using HMC1502 magnetometer of cars belonging to different types ( Length of
Car(inm) - (3.0-3.5)∈ Type 1; (3.5-4.0)∈ Type 2; (4.0-4.5)∈ Type 3; (>4.5)∈ Type 4) are shown.
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Problem Statement:

“To classify vehicles using magnetic signatures obtained from
passive magnetometers.”

Steps involved in solving

◮ Data Modeling of magnetic signature

◮ Extraction of feature vector from the magnetic signature.

◮ Use classification techniques and study the performance of
the classifier.
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DATA MODEL - MAGNETIC DIPOLE MODEL§

◮ A vehicle can be modeled as an array of dipoles.

Illustration of a Magnetic Dipole Model for a Vehicle.
m(i)where, i ∈ {1, . . . ,M} represents magnetic dipole moments,∆X(j)
where, j ∈ {1, . . . ,M− 1} is the separation between adjacent dipoles,
∆Y and ∆Z are the offsets, v0 be the velocity of the vehicle and r0 be

distance of m(1) from the sensor placed at the origin.

§
N. Wahlstrom, J. Callmer, and F. Gustafsson, “Magnetometers for tracking metallic targets,” in Information

Fusion (FUSION), 2010
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DATA MODEL - MAGNETIC DIPOLE MODEL¶

◮ If the distance from the object is large in comparison with its

characteristic length, the induced magnetic field ~B(r,m) at position
r = [x, y, z]T relative to the object can be described as a magnetic dipole
field is given as

~B(r,m) =
µ0

4π

3(r ·m)r − r2m

r5
(1)

where ~B(r,m) = [B(x)(r,m),B(y)(r,m),B(z)(r,m)]T ,
m = [m(x),m(y),m(z)]T is the magnetic dipole moment, r = ‖r‖2 is the
L2-Norm and (r ·m) is the scalar dot product of the two vectors.

◮ Substituting r = [x, y, z]T and m = [m(x),m(y),m(z)]T in equation (1)
gives the following

B(x)(r,m)=
µ0

4π

(3x2 − r2)m(x) + 3xym(y) + 3xzm(z)

r5
(2)

¶
N. Wahlstrom, J. Callmer, and F. Gustafsson, “Magnetometers for tracking metallic targets,” in Information

Fusion (FUSION), 2010
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SENSOR INDEPENDENT APPROACH

◮ In the signal processing framework, a sensor can be modeled as a
time-invariant system

yk = f (rk,mk) + ek (3)

=
µ0

4π

3(rk ·mk)rk − r2kmk

r5k
+ ek (4)

◮ The number of parameters to be estimated for anM-dipole model is
4M+ 1

p = [m(i)T,∆X(j),∆Y,∆Z]T

◮ The vehicle is assumed to move parallel to the X-axis, the only time
varying component in rk is xk

f (rk,mk) = f (xk,p) (5)

◮ Let p̂ be the estimate of p. Then, the Non-linear Least Squares (NLS)
cost function gives the following

p̂ = argmin
p

V(p) (6)

where, V(p) =
N∑

k=1

[yk − f (xk,p)]
T[yk − f (xk,p)] (7)
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MAGNETIC DIPOLE MOMENTS AND DIPOLE

SEPARATION ALGORITHM (MDMS ALGORITHM)

Input: Smoothed Vehicle Magnetic Signature - aN×1

Input: The number of magnetic dipoles - M
1: Subtract every kth, k ∈ {1, . . . ,N} sample with the mean of first N/10

samples of aN×1

2: Get the Data Model ak = f (rk,mk) + ek

3: V(p) =
N∑

k=1

[ak − f (xk, p)]
T [ak − f (xk,p)], p be the parameters to

estimated and p = [m(i)T,∆X(j),∆Y,∆Z]T

4: Estimate p, p̂ = argmin
p

V(p)

5: Normalized Magnetic Moments m̃(i) =
m(i)

‖m(i)‖2
Output: Normalized Magnetic Dipole Moments m̃(i), i ∈ {1, . . . ,M};

Separation between adjacent dipoles∆X(j), j ∈ {1, . . . ,M− 1} and RMSE
where,
(RMSE)2 = 1

N

∑N
k=1 [yk − f (xk, p̂)]

T [yk − f (xk, p̂, )]
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SIMULATION RESULTS
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(i) 3-Dipole Model curve fit for a Tata
Indica magnetic reading.
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(j) 4-Dipole Model curve fit for a Tata

Indica magnetic reading.

Sample curve fitting plots for measurements corresponding to a Tata Indica car using MDMS algorithm.
M ∈ {3, 4}. Sampling Frequency, Fs = 100Hz. The error in the fit decreases as number of dipoles increases.

Location: IISc Campus

m-Dipole Model with Dipole Separation, Dipole Moments and RMSE for a Tata Indica Car’s Magnetic Signature

M-Dipole ∆X(j) m̃(i) =
m(i)

‖m(i)‖2
RMSE

3-Dipole
0.474

m̃(1) = (−0.77,+0.33,−0.52)
19.5

0.370
m̃(2) = (+0.26,−0.18,+0.94)
m̃(3) = (−0.71,−0.19,−0.67)

4-Dipole
0.471

m̃(1) = (+0.79,+0.29,−0.52)

12.20.434
m̃(2) = (−0.43,−0.06,+0.89)

0.001
m̃(3) = (+0.35,+0.93,−0.05)
m̃(4) = (−0.34,−0.93,+0.04)
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COMPUTATION COMPLEXITY

◮ The computational complexity of the NLS cost function using MATLAB
function lsqcurvefit is O{(4M+ 1)3}. As the number of dipoles
increases by 1, the number of parameters to be estimated increases by 4
and so does the complexity.

Number of Parameters and RMSE for Available Datasets

M-Dipole Model Size of p = (4M+ 1)× 1 RMSE‖

3-Dipole 13× 1 7.64

4-Dipole 17× 1 5.57

‖
In order to check the variation of RMSE as the number of dipoles M increases, we calculate the average RMSE

for all the datasets ‘D’ across different values of M.

RMSE =
1

D

D∑

i=1

RMSEi (8)
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EXISTING ALGORITHMS∗∗ FOR CLASSIFICATION
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(k) Average-Bar Transform: Here the vehicle
signature vector of length N, is divided into S
sub-vectors. The mean value of each sub-vector is
calculated and the obtained values for S sub-vector is
the feature vector. The value of S is fixed for all
classes of vehicles.
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(l) Hill-Pattern Transform: This method transforms
the signal into a sequence of {+1,−1} and without
losing much information. This extracts the pattern of
“peaks” and “valleys” (local maxima and minima) of
the input signal. The sequence of {+1,−1} is used
as a feature vector.

∗∗
S.Y. Cheung and P. Varaiya, Traffic surveillance by wireless sensor networks, research note, University of

California, Berkeley,Jan 2007. http://www.its.berkeley.edu/publications/UCB/2007/PRR/
UCB-ITS-PRR-2007-4.pdf.
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CLASSIFICATION METRIC

◮ We assume Ltr and Lts to be the number of training and testing datasets
picked. We define the correct rate of classification, CR as follows

CR =
1

I

I∑

i=1

Ωi

Lts
(9)

where Ωi is the number of vehicles classified correctly among Lts

number of cars in the ith iteration and the total number of iterations is I.
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CLASSIFICATION USING SVM

◮ The goal of a Support Vector Machine(SVM) is to produce
a model (based on the training data) which predicts the
target value of the test data given only the test data
attributes.

Percentage of CR for Type 1 vs Type 4 Car for Average Bar, Hill Transform and MDMS Algorithm

Datasets Feature Extraction Algorithms

(Ltr, Lts)
Average Bar Hill Transform

MDMS Algorithm

Algorithm Algorithm
3-DM 3-DM
m̃ ∆X

(70,44) 72.70 76.33 73.80 74.14
(80,34) 73.88 75.39 74.12 74.27
(90,24) 76.26 77.91 76.67 76.78

Percentage of CR for Type 2 vs Type 3 Car for Average Bar, Hill Transform and MDMS Algorithm

Datasets Feature Extraction Algorithms

(Ltr, Lts)
Average Bar Hill Transform

MDMS Algorithm

Algorithm Algorithm
3-DM 3-DM
m̃ ∆X

(70,50) 57.67 52.33 71.99 72.60
(80,40) 57.54 53.90 73.49 73.45
(90,24) 58.48 51.03 74.74 74.74
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Thank You
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