Data	a Collection	Data Model	Feature Extraction	Classification
000)	00	00	000

Classification of Vehicles Using Magnetic Dipole Model

Prateek G V, Rajkumar V, Nijil K and K.V.S. Hari

prateek@ece.iisc.ernet.in, rajdbz@gmail.com, nijil@ece.iisc.ernet.in and hari@ece.iisc.ernet.in

http://ece.iisc.ernet.in/~ssplab

Statistical Signal Processing Laboratory, Department of ECE Indian Institute of Science, Bangalore, India.

> IEEE TENCON 2012, Cebu, Philippines 21st November 2012

Funded by DIT-ASTEC Wireless Sensor Project, Department of Information Technology, Ministry of Communications & Information Technology, Govt. of India.

Data Collection	Data Model	Feature Extraction	Classification
000	00	00	000

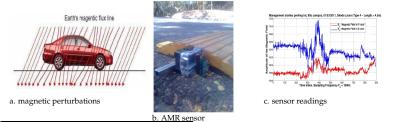
MOTIVATION FOR CLASSIFICATION OF VEHICLES

- One important requirement for a traffic management system is the capability to detect the presence of a vehicle and type of a vehicle (car, bus, truck, etc). Based on such detection, statistics such as
 - ► vehicle count
 - traffic flow speed
 - occupancy
- Induction loop and Video-Image are used most widely technologies but they have a lot of disadvantages.
 - Induction loops are big in size with difficulty in maintenance.
 - Video-Image based sensor are costly with big influence of external light conditions.

Data Collection	Data Model	Feature Extraction	Classification
000	00	00	000

CLASSIFICATION OF VEHICLES USING MAGNETIC SIGNATURES

- Passive magnetometers* that are capable of sensing the magnetic field can be used. The motes having these sensors mounted on them can be programmed with a vehicle detection algorithm[†]
- High level of flexibility in their deployment configuration and costs less.



*Anisotropic Magnetoresistive(AMR) sensors detect the distortions of the earth's magnetic field, which is assumed to be uniform over a wide area on the scale of kilometers.

[†]S.Y. Cheung and P. Varaiya, Traffic surveillance by wireless sensor networks, research note, University of California, Berkeley,Jan 2007. http://www.its.berkeley.edu/publications/UCB/2007/PRR/ UCB-ITS-PRR-2007-4.pdf.

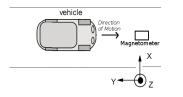
Data Collection	Data Model	Feature Extraction	Classification
000	00	00	000

DATA COLLECTION

► Data is collected using two different mechanism.

(a) Remote Controlled Car

(b) Skate Board



Right path

Paths across which the HMC1502 sensor mounted on a TelosB wireless mote placed in a fiber casing, with either a remote control car setup or skate board setup, was moved

Data Collection	Data Model	Feature Extraction	Classification
•00	00	00	000
			1

DATABASE - VEHICLE MAGNETIC SIGNATURES

Vehicle Magnetic Signature Database[‡] grouped based on the length of the car

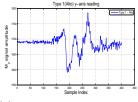
Car-type	Type 1	Type 2	Type 3	Type 4
Car Length (in <i>meters</i>)	(3.0-3.5)	(3.5-4.0)	(4.0-4.5)	(>4.5)
Type of *Car(n), where n represents number of datasets Cars = 42 Sets = 89	¹ 800(8) ¹ Alto(2) ² Matiz(3) ³ Santro(5) ¹ Omni(6) ⁹ Spark(1) ⁴ Nano(2) ¹ WagonR(4) ¹ Estillo(3) ⁹ Beat(2) ¹³ Reva(1)	¹¹ Corsa(2) ³ i20(1) ⁵ Figo(2) ³ GetZ(2) ³ i10(4) ⁴ Indica(6) ⁷ Palio(1) ¹ Swift(2) ¹ Zen(2) ³ Ritz(1)	³ Accent(1) ² Cielo(1) ⁶ City(4) ¹² Vento(1) ¹ SX4(2) ³ Verna(1) ¹ Esteem(2) ⁴ Indigo(2) ¹ Dzire(1) ⁴ Sumo(1) ⁵ Fiesta(1) ⁶ Petra(1) ¹⁴ Logan(1)	⁶ Civic(1) ⁸ Corolla(1) ³ Elentra(2) ⁸ Innova(2) ⁷ Linea(1) ³ Sonata(1) ¹⁰ Octiva(1) ¹⁰ Laura(1)
Number of Datasets	87	67	53	27

^{*} Indicates the Car Manufacturer ¹ - Maruti Suzuki; ² - Daewoo; ³ - Hyundai; ⁴ - Tata Motors; ⁵ - Ford; ⁶ - Honda; ⁷ - Fiat; ⁸ - Toyota; ⁹ - Chevrolet; ¹⁰ - Skoda; ¹¹ - Opel; ¹² - Volkswagon; ¹³ - Mahindra; ¹⁴ - Renault.

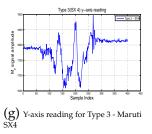
[‡] A. S. Bhat, A. K. Deshpande, K. G. Deshpande, and K. V. S. Hari, "Vehicle detection and classification using magnetometer - data acquisition," tech. rep., 2011.

Data Collection	Data Model	Feature Extraction	Classification
000	00	00	000

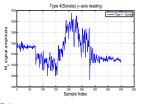
SAMPLE MAGNETIC SIGNATURES

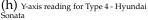


(e) Y-axis reading for Type 1 - Maruti Alto



(f) Y-axis reading for Type 2 - Tata Indica





The Y-axis trajectories obtained using HMC1502 magnetometer of cars belonging to different types (Length of Car(inm) - $(3.0-3.5) \in$ Type 1; $(3.5-4.0) \in$ Type 2; $(4.0-4.5) \in$ Type 3; $(>4.5) \in$ Type 4) are shown.

Data Collection	Data Model	Feature Extraction	Classification
000	00	00	000

Problem Statement:

"To classify vehicles using magnetic signatures obtained from passive magnetometers."

Steps involved in solving

- Data Modeling of magnetic signature
- Extraction of feature vector from the magnetic signature.
- Use classification techniques and study the performance of the classifier.

Data Collection	Data Model	Feature Extraction	Classification
000	00	00	000

DATA MODEL - MAGNETIC DIPOLE MODEL§

• A vehicle can be modeled as an array of dipoles.

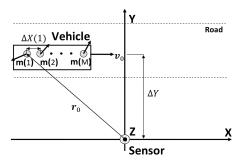


Illustration of a Magnetic Dipole Model for a Vehicle. $\mathbf{m}(i)$ where, $i \in \{1, ..., M\}$ represents magnetic dipole moments, $\Delta X(j)$ where, $j \in \{1, ..., M - 1\}$ is the separation between adjacent dipoles, ΔY and ΔZ are the offsets, \mathbf{v}_0 be the velocity of the vehicle and \mathbf{r}_0 be distance of $\mathbf{m}(1)$ from the sensor placed at the origin.

⁸N. Wahlstrom, J. Callmer, and F. Gustafsson, "Magnetometers for tracking metallic targets," in *Information Fusion (FUSION)*, 2010

Data Collection	Data Model	Feature Extraction	Classification
000	••	00	000

Data Model - Magnetic Dipole Model \P

▶ If the distance from the object is large in comparison with its characteristic length, the induced magnetic field *B*(**r**, **m**) at position **r** = [*x*, *y*, *z*]^{*T*} relative to the object can be described as a magnetic dipole field is given as

$$\vec{B}(\mathbf{r},\mathbf{m}) = \frac{\mu_0}{4\pi} \frac{3(\mathbf{r}\cdot\mathbf{m})\mathbf{r} - r^2\mathbf{m}}{r^5}$$
(1)

where $\vec{B}(\mathbf{r}, \mathbf{m}) = [B^{(x)}(\mathbf{r}, \mathbf{m}), B^{(y)}(\mathbf{r}, \mathbf{m}), B^{(z)}(\mathbf{r}, \mathbf{m})]^T$, $\mathbf{m} = [m^{(x)}, m^{(y)}, m^{(z)}]^T$ is the magnetic dipole moment, $r = ||\mathbf{r}||_2$ is the L^2 -Norm and $(\mathbf{r} \cdot \mathbf{m})$ is the scalar dot product of the two vectors.

► Substituting r = [x, y, z]^T and m = [m^(x), m^(y), m^(z)]^T in equation (1) gives the following

$$B^{(x)}(\mathbf{r},\mathbf{m}) = \frac{\mu_0}{4\pi} \frac{(3x^2 - r^2)m^{(x)} + 3xym^{(y)} + 3xzm^{(z)}}{r^5}$$
(2)

[¶]N. Wahlstrom, J. Callmer, and F. Gustafsson, "Magnetometers for tracking metallic targets," in Information Fusion (FUSION), 2010

Data Collection	Data Model	Feature Extraction	Classification
000	0•	00	000

SENSOR INDEPENDENT APPROACH

 In the signal processing framework, a sensor can be modeled as a time-invariant system

$$\mathbf{y}_k = f(\mathbf{r}_k, \mathbf{m}_k) + \mathbf{e}_k \tag{3}$$

$$= \frac{\mu_0}{4\pi} \frac{3(\mathbf{r}_k \cdot \mathbf{m}_k)\mathbf{r}_k - r_k^2 \mathbf{m}_k}{r_k^5} + \mathbf{e}_k$$
(4)

► The number of parameters to be estimated for an *M*-dipole model is 4M + 1

$$\mathbf{p} = [\mathbf{m}(i)^T, \Delta X(j), \Delta Y, \Delta Z]^T$$

► The vehicle is assumed to move parallel to the X-axis, the only time varying component in r_k is x_k

$$f(\mathbf{r}_k, \mathbf{m}_k) = f(x_k, \mathbf{p}) \tag{5}$$

Let p̂ be the estimate of p. Then, the Non-linear Least Squares (NLS) cost function gives the following

$$\hat{\mathbf{p}} = \arg \min_{\mathbf{p}} V(\mathbf{p})$$
 (6)

where,
$$V(\mathbf{p}) = \sum_{k=1}^{N} [\mathbf{y}_k - f(x_k, \mathbf{p})]^T [\mathbf{y}_k - f(x_k, \mathbf{p})]$$
 (7)

Data Collection Data	Model Feature Extraction	Classification
000 00	00	000

MAGNETIC DIPOLE MOMENTS AND DIPOLE SEPARATION ALGORITHM (MDMS ALGORITHM)

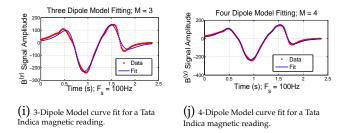
Input: Smoothed Vehicle Magnetic Signature - $\mathbf{a}_{N \times 1}$ **Input:** The number of magnetic dipoles - *M*

- 1: Subtract every $k^{th}, k \in \{1, ..., N\}$ sample with the mean of first N/10 samples of $a_{N \times 1}$
- 2: Get the Data Model $\mathbf{a}_k = f(\mathbf{r}_k, \mathbf{m}_k) + \mathbf{e}_k$
- 3: $V(\mathbf{p}) = \sum_{k=1}^{N} [\mathbf{a}_k f(x_k, \mathbf{p})]^T [\mathbf{a}_k f(x_k, \mathbf{p})], \mathbf{p}$ be the parameters to estimated and $\mathbf{p} = [\mathbf{m}(i)^T, \Delta X(j), \Delta Y, \Delta Z]^T$
- 4: Estimate $\mathbf{p}, \hat{\mathbf{p}} = \arg\min_{\mathbf{p}} V(\mathbf{p})$
- 5: Normalized Magnetic Moments $\tilde{\mathbf{m}}(i) = \frac{\mathbf{m}(i)}{\|\mathbf{m}(i)\|_2}$
- **Output:** Normalized Magnetic Dipole Moments $\hat{\mathbf{m}}(i)$, $i \in \{1, ..., M\}$; Separation between adjacent dipoles $\Delta X(j)$, $j \in \{1, ..., M-1\}$ and *RMSE* where,

$$(RMSE)^{2} = \frac{1}{N} \sum_{k=1}^{N} [\mathbf{y}_{k} - f(x_{k}, \hat{\mathbf{p}})]^{T} [\mathbf{y}_{k} - f(x_{k}, \hat{\mathbf{p}},)]$$

Data Collection 000	Data Model 00	Feature Extraction ●○	Classification 000

SIMULATION RESULTS



Sample curve fitting plots for measurements corresponding to a Tata Indica car using MDMS algorithm. $M \in \{3, 4\}$. Sampling Frequency, $F_s = 100Hz$. The error in the fit decreases as number of dipoles increases. Location: IISc Campus

M-Dipole	$\Delta X(j)$	$\tilde{\mathbf{m}}(i) = \frac{\mathbf{m}(i)}{\ \mathbf{m}(i)\ _2}$	RMSE
3-Dipole	0.474 0.370	$ \begin{split} \tilde{\mathbf{m}}(1) &= (-0.77, +0.33, -0.52) \\ \tilde{\mathbf{m}}(2) &= (+0.26, -0.18, +0.94) \\ \tilde{\mathbf{m}}(3) &= (-0.71, -0.19, -0.67) \end{split} $	19.5
4-Dipole	0.471 0.434 0.001	$\begin{array}{l} \tilde{\mathfrak{m}}(1) = (+0.79, +0.29, -0.52) \\ \tilde{\mathfrak{m}}(2) = (-0.43, -0.06, +0.89) \\ \tilde{\mathfrak{m}}(3) = (+0.35, +0.93, -0.05) \\ \tilde{\mathfrak{m}}(4) = (-0.34, -0.93, +0.04) \end{array}$	12.2

m-Dipole Model with Dipole Separation, Dipole Moments and RMSE for a Tata Indica Car's Magnetic Signature

Data Collection	Data Model	Feature Extraction	Classification
000	00	00	000

COMPUTATION COMPLEXITY

► The computational complexity of the NLS cost function using MATLAB function **lsqcurvefit** is $O\{(4M + 1)^3\}$. As the number of dipoles increases by 1, the number of parameters to be estimated increases by 4 and so does the complexity.

M-Dipole Model	Size of $\mathbf{p} = (4M + 1) \times 1$	$\overline{RMSE}^{\parallel}$
3-Dipole	13×1	7.64
4-Dipole	17×1	5.57

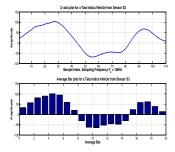
Number of Parameters and	d <u>RMSE</u> for Available	Datasets

$$\overline{RMSE} = \frac{1}{D} \sum_{i=1}^{D} RMSE_i$$

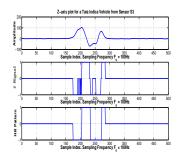
^{||} In order to check the variation of *RMSE* as the number of dipoles *M* increases, we calculate the average *RMSE* for all the datasets '*D*' across different values of *M*.

Data Collection	Data Model	Feature Extraction	Classification
000	00	00	000

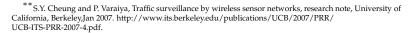
EXISTING ALGORITHMS** FOR CLASSIFICATION



 (\mathbf{k}) Average-Bar Transform: Here the vehicle signature vector of length N, is divided into Ssub-vectors. The mean value of each sub-vector is calculated and the obtained values for S sub-vector is the feature vector. The value of S is fixed for all classes of vehicles.



(1) Hill-Pattern Transform: This method transforms the signal into a sequence of $\{+1, -1\}$ and without losing much information. This extracts the pattern of "peaks" and "valleys" (local maxima and minima) of the input signal. The sequence of $\{+1, -1\}$ is used as a feature vector.



Data Collection	Data Model	Feature Extraction	Classification
000	00	00	•00

CLASSIFICATION METRIC

• We assume L_{tr} and L_{ts} to be the number of training and testing datasets picked. We define the correct rate of classification, C_R as follows

$$C_R = \frac{1}{I} \sum_{i=1}^{I} \frac{\Omega_i}{L_{ts}} \tag{9}$$

where Ω_i is the number of vehicles classified correctly among L_{ts} number of cars in the *i*th iteration and the total number of iterations is *I*.

Data Collection	Data Model	Feature Extraction	Classification
000	00	00	○●○

CLASSIFICATION USING SVM

The goal of a Support Vector Machine(SVM) is to produce a model (based on the training data) which predicts the target value of the test data given only the test data attributes.

Datasets	Feature Extraction Algorithms			
(L_{tr}, L_{ts})	Average Bar Algorithm	Hill Transform Algorithm	MDMS 3-DM m̃	Algorithm 3-DM ΔX
(70,44)	72.70	76.33	73.80	74.14
(80,34)	73.88	75.39	74.12	74.27
(90,24)	76.26	77.91	76.67	76.78

Percentage of C_R for Type 1 vs Type 4 Car for Average Bar, Hill Transform and MDMS Algorithm

Percentage of C_R for Type 2 vs Type 3 Car for Average Bar, Hill Transform and MDMS Algorithm

Datasets	Feature Extraction Algorithms			
	Average Bar	Hill Transform		Algorithm
(L_{tr}, L_{ts})	Algorithm	Algorithm	3-DM m	3-DM ΔX
(70,50)	57.67	52.33	71.99	72.60
(80,40)	57.54	53.90	73.49	73.45
(90,24)	58.48	51.03	74.74	74.74

Data Collection 000	Data Model 00	Feature Extraction 00	Classification 00●
States and			19 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2
		The second se	Company Robert
	A STATE		
	ALC: NOT		
1 and the	Ina	nk You	
Mr.		The Asian	
Contraction of the			
City Mark Contraction	K		