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a b s t r a c t 

We propose a method to detect a target in a bistatic passive polarimetric radar network, with weather 

surveillance radar as our illuminator of opportunity (IO). We build our signal model using electromagnetic 

vector sensors (EMVS) as the receiver, which captures the reflections from a point-like target present 

in the scene of interest, surrounded with strong clutter. We develop a generalized likelihood ratio test 

(GLRT) detector that is robust to inhomogeneous clutter. We also develop a maximum likelihood (ML) 

solution to extract the signal subspace from the received data contaminated by the clutter interference. 

We provide the exact distribution of the test statistic for the asymptotic case and evaluate its performance 

loss by considering a reduced set of data. The proposed GLRT method is a constant false alarm rate (CFAR) 

detector, which makes it robust against the inhomogeneous clutter. With the help of numerical results, 

we demonstrate the robustness and the limitations of our proposed method. 

© 2017 Elsevier B.V. All rights reserved. 

1

 

t  

t  

n  

a  

t  

o  

i  

e  

o  

w  

t  

i  

a  

a  

t  

t  

w  

1

m

n  

k  

e

 

t

r  

t  

r  

v  

r  

t  

c  

r  

m  

d  

l  

n  

l  

d  

a  

h

0

. Introduction 

Improving the detection performance of a target can be impor-

ant for military and surveillance operations. Over the last decade,

here has been a growing interest in the radar research commu-

ity to use available signals such as, FM radio waves, television

nd audio broadcast signals, and satellite and mobile communica-

ion based signals, as illuminators of opportunity (IO), with one

r several receivers, co-located or distributed randomly, measur-

ng the echoes generated from the target of interest [1–3] . In gen-

ral, a radar network consisting of non-cooperative IOs and one

r several passive receivers is referred to as a passive radar net-

ork. Because the network uses available signals of opportunity,

he need to build sophisticated infrastructure for the transmitter

s avoided, thereby reducing the overall cost of the network. In

ddition, the receivers are smaller, cheaper, consume less power,

nd can be easily deployed, making the network less vulnerable

o electronic counter measures and better able to counter stealth

echnology [4] . In this paper, we propose a passive bistatic net-

ork, with weather surveillance radar as the IO and electromag-
� This work was supported by the AFOSR Grants FA9550-11-1-0210 and FA9550- 

6-1-0386 . 
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etic vector sensor (EMVS) [5] as the receiver. To the best of our

nowledge, no previous work on passive bistatic radar addressed

mploying a weather radar for target detection. 

The signal arriving at the receiver consists of the signal from

he non-cooperative transmitter (transmitter-to-receiver), which is 

eferred to as the reference channel, and the echoes generated by

he reflection of the transmitted signal from the target (target-to-

eceiver), which are referred to as the surveillance channel. Con-

entionally, spatial and temporal filtering techniques isolate the

eference from the surveillance channel. For target detection, the

ransmitted signal is estimated from the reference channel, and

ross-correlated with the signal in the surveillance channel. The

esulting function called the cross-ambiguity function (CAF) [6–9] ,

imics a matched filter output. The performance of the CAF-based

etector degrades depending on the signal strengths of the surveil-

ance and reference channel. In some scenarios, the direct path sig-

al that is received via the side lobes of the receiver antenna is

ikely to mask the target echoes. In such cases, the Doppler and

elay are estimated either by cancellation of the direct path [10] or

pplying the modified cross-correlation method [11] . On the other

and, when a good estimate of the reference channel signal is not

vailable, which occurs due to propagation losses, and blockage or

on-availability of the line-of-sight, only the surveillance channel

s considered for target detection. 

A generalized likelihood ratio test (GLRT) represents a solution

o the passive radar detection problem when a good estimate of

http://dx.doi.org/10.1016/j.sigpro.2017.02.009
http://www.ScienceDirect.com
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the transmitted signal is not available in the reference channel.

Only the surveillance channel is considered, due to which the de-

tector does not require knowledge of reference channel signal-to-

noise ratio ( SNR ) . Hack et al. [12] present a GLRT-based detector

in a passive network of non-overlapping frequency band. A simi-

lar approach is presented in [13,14] for a multistatic passive radar

network. Building on a GLRT framework, Wang and Yazici [15] de-

scribe a passive imaging detector based on electromagnetic signal

modeling. 

There are 150 nearly identical dual-polarized S-band Doppler

weather surveillance radars in the USA, with an observation range

of 230 − 460 km and a range resolution of 0 . 25 − 1 km, depend-

ing on the mode of operation [16] . The radar operates accord-

ing to selected scanning pattern using high-power transmitter and

mechanically-rotated antenna, with a minimum and maximum el-

evation angle of 0.5 ° and 20 °, respectively. Due to the high ele-

vation angle and its corresponding volume coverage pattern (VCP),

along with the rotating platform of the transmitter, minimal direct-

path signal is observed by the receiver located on the ground in

the reference channel. However, because of the high sensitivity of

a weather radar [17] , the received echoes contain reflections from

clouds and precipitation in addition to the signal of interest. In

such scenarios, the signal models presented in [12,14] cannot be

applied. In general, the target is anisotropic in nature whose scat-

tering parameters are unknown. To overcome these problems, we

develop a polarimetric signal model that considers the effect of in-

homogeneous clutter and noise at the receiver. We make realistic

assumptions in our signal model, where the clutter reflections are

generated from an unknown covariance matrix depending on the

hydrometeors present in the range gate of interest [18, Chapter 7] .

We believe we are the first to consider polarization information

for mitigating signal-dependent clutter and improve detection in a

passive radar, with weather surveillance radar as IO. The goal of

this paper is to detect a target, using a passive bistatic radar net-

work of electromagnetic vector sensors and a weather surveillance

radar as the illuminator of opportunity, in the presence of signal-

dependent clutter. 

The remainder of this paper is organized as follows. Signal,

clutter, and noise models are explained in detail in Section 2 . In

Sections 3.1 –3.3 , we derive a detector based on the GLRT frame-

work and provide a closed form expression of the distribution of

the test statistic in Section 3.4 . The expression of the probability

of false alarm does not depend on the transmitted signal, clutter,

and receiver noise, which indicates the proposed GLRT method is

a constant false alarm rate (CFAR) detector. In Section 4 , we an-

alyze the performance of the proposed detector through numer-

ical simulations. We vary the system settings, such as the num-

ber of snapshots, and the clutter-to-noise ratio ( CNR ), and we de-

termine the performance of the detector by plotting the curves

for the probability of detection. Finally, the paper is summarized

in Section 5 . 

Notations : Bold uppercase and calligraphic uppercase letters de-

note matrices. Bold lowercase letters denote vectors. Scalars are

denoted by both lowercase and uppercase letters. For any complex

matrix A , we use A 

T , A 

H , A 

∗, A 

−1 
, A 

† , Tr { A } , and | A | to denote the

transpose, conjugate-transpose, conjugate, inverse, pseudo-inverse,

trace, and determinant of A , respectively. Additionally, I N represent

identity of dimension N . The matrices P A and P ⊥ A denotes projec-

tion matrix of A and its orthogonal projection matrix, respectively.

� stands for the Kronecker product, → denotes convergence, and

‖·‖ represents the � 2 -norm. Further, j represents 
√ −1 , CN stands

for complex normal distribution, � and � denote the real-part and

imaginary-part of a complex number, respectively, and E [ ·] repre-

sents the expectation operator. 

�  
. Signal model and statistics 

.1. Signal model 

We consider a dual-polarized weather radar located at t =
 t x , t y , t z ] 

T ∈ R 

3 as the illuminator of opportunity in our signal

odel. The polarimetric representation of the transmitted complex

andpass signal is given by Q αw βs (t) e j�C t where 

 α = 

[
cos α sin α

− sin α cos α

]
, w β = 

[
cos β
j sin β

]
, (1)

and β represent the orientation and ellipticity of polarization

f the transmitted signal, respectively, and �C is the carrier fre-

uency. The signal s ( t ) is the complex baseband signal, t ∈ [0, T ],

here T /2 is the pulse repetition interval (PRI) of a dual-polarized

ransmitter, which sends sequentially two pulses of orthogonal po-

arization. Exploiting the polarimetric information provides useful

nformation about the target, such as its geometry, material, and

rientation. In order to capture this polarimetric information, we

eed to use diversely polarized antennas. One popular category

f such antennas includes the electromagnetic vector sensors [5] ,

here the electric dipoles and electric loops are aligned within

he three axes of the coordinate system. Let (θ, φ) denote the

zimuth and elevation angle, respectively, of a hypothesized tar-

et located at p = [ p x , p y , p z ] 
T ∈ R 

3 and traveling with a velocity

˙ p = [ ̇ p x , ˙ p y , ˙ p z ] 
T ∈ R 

3 , as seen by the receiver. The steering matrix

f an electromagnetic vector sensor denoted as D θ, φ ∈ R 

6 ×2 can be

arameterized as [5] 

 θ, φ = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

− sin θ − cos θ sin φ
cos θ − sin θ sin φ

0 cos φ
− cos θ sin φ sin φ
− sin θ sin φ − cos φ

cos φ 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (2)

pecial cases of the steering matrix in (2) are the tripole antenna

19] and the classical polarization radar using vertical and hori-

ontal linear polarization. The target and the background clutter

re characterized by their scattering matrices, which depend on

he angle of view and the frequency of the transmitted signal. Let

 p ∈ C 

2 ×2 and S c ∈ C 

2 ×2 denote the hypothesized target and clutter

cattering matrix coefficients, respectively, as seen by the receiver

ocated at coordinates r = [ r x , r y , r z ] 
T ∈ R 

3 , where S p and S c are pa-

ameterized as [20] 

 p = 

[
σhh 

p σhv 
p 

σvh 
p σvv 

p 

]
and S c = 

[
σhh 

c σhv 
c 

σvh 
c σvv 

c 

]
. (3)

he coefficients σhh 
(p , c) 

and σvv 
(p , c) 

represent the co-polar scattering

oefficients, and the variables σvh 
(p , c) 

and σhv 
(p , c) 

represent the cross-

olar scattering coefficients. The complex envelope at the output

f the quadrature receiver can be expressed as 

 (t) = D θ, φS p Q αw βs (t − τp ) e 
j�D t e − j�C τp 

+ D θ, φS c Q αw βs (t − τc ) e 
− j�C τc + e (t) , (4)

here 

�D = 

�C 

c 

[
( r − p ) T ˙ p 

‖ 

r − p ‖ 

+ 

( p − t ) T ˙ p 

‖ 

p − t ‖ 

]
, 

and τp = 

‖ 

r − p ‖ 

+ ‖ 

p − t ‖ 

c 
. (5)

ere, τp represents the time it takes for the signal to travel from

he transmitter to the target, and from the target to the receiver.

represents the Doppler shift in the signal, c is the speed of the
D 
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1 For a tripole antenna L = 3 N, M = 2 N, P = 4 , and k = 1 . For a classical polariza- 

tion radar using vertical and horizontal linear polarization L = 2 N, M = 2 N, P = 4 , 

and k = 1 . 
ropagation of the electromagnetic wave, and e ( t ) is the complex

aseband thermal noise. The Doppler frequency shift in (5) is com-

uted based on the relative motion between the transmitter and

he target, and the target and receiver in a passive bistatic radar

eometry [21] . In Eq. (4) , we assume that the target moves with

 certain velocity, ˙ p , and the Doppler frequency shift produced by

he clutter is zero. The signal model in (4) can be easily extended

o a known non-zero Doppler frequency shift produced by the clut-

er. Since the weather radar operates at high elevation angles, the

ype of clutter we are dealing with in our signal model is a me-

eorological hydrometeor. Also, it is reasonable to assume that the

eceiver has a good prior knowledge of the Doppler frequency shift

roduced by clutter through Level II and Level III weather radar

ata products, which are available for commercial applications and

pdated regularly. Further, we assume that τc is known and is ap-

roximately equal to the time it takes for the transmitted signal

o travel from the transmitter to the center of the range cell, and

rom the center of the range cell to the receiver. Based on this as-

umption, τp = τc + �τp , where �τp accounts for the shift in the

arget’s position from the center of the range cell. Compensating

or the absolute phase term e − j�C τc , the received signal in (4) can

e written as 

 (t) = D θ, φS p Q αw βs (t − τp ) e 
j�D t e − j�C �τp 

+ D θ, φS c Q αw βs (t − τc ) + e (t) . (6) 

e introduce the vectorized scattering matrix coefficients, x p =
 

− j�C �τp [ σhh 
p , σvv 

p , σ
hv 
p , σ

vh 
p ] T and x c = [ σhh 

c , σvv 
c , σhv 

c , σvh 
c ] T , that de-

ote the target and clutter reflectivity coefficients, respectively. Let

α, β � [ ε1 , ε2 ] 
T = Q αw β denote the polarization vector. We define

olarization matrix as [22] 

¯α, β = 

[
ε1 0 ε2 0 

0 ε2 0 ε1 

]
. (7) 

here rank ( ̄εα, β) = 2 . Then, the received signal in (6) can be

ewritten as 

 (t) = D θ, φε̄α, βx p s (t − τp ) e 
j�D t + D θ, φε̄α, βx c s (t − τc ) + e (t) . (8) 

e define a snapshot as a signal that contains both orthogonal po-

arized waveforms of the transmitted signal. The received signal is

ampled at every �t seconds, where �t represents the fast-time

ampling interval. Let the number of samples in each range gate

e N , where N is even. We define s [ n ] of a continuous-time sig-

al s ( t ) as s [ n ] = s (n �t) . We denote the time delay and Doppler

hift in the sampled signal domain as n p = τp / �t, n c = τc / �t, and

 D = �D �t, respectively. After sampling, the signal received by

he EMVS at time n �t becomes 

 [ n ] = D θ, φε̄α, βx p s [ n − n p ] e 
jω D n + D θ, φε̄α, βx c s [ n − n c ] + e [ n ] . (9) 

f the time samples are stacked in a vector, (9) can be written as 

 = 

(
s (n p , ω D ) �D θ, φε̄α, β

)
x p + 

(
s (n c , 0) �D θ, φε̄α, β

)
x c + e (10) 

here 

y = 

[
y [0] T , y [1] T , . . . , y [ N − 1] T 

]T 
, 

 (n τp 
, ω D ) = 

[
s (−n p ) e 

j(0) ω D , . . . , s (N − 1 − n p ) e 
j(N−1) ω D 

]T 
, 

s (n c , 0) = [ s (−n c ) , . . . , s (N − 1 − n c ) ] 
T 
, 

e = 

[
e [0] T , e [1] T , . . . , e [ N − 1] T 

]T 
. 

et F N ∈ C 

N×N denote the unitary discrete Fourier transform (DFT)

atrix such that the ( m , n ) th element is 

 F ] m,n = 

1 √ 

N 

e − j 2 πN mn 

or m, n = 0 , . . . , N − 1 . Let L N (x ) ∈ C 

N×N denote a diagonal matrix

uch that 

 N (x ) = diag 
{

e j(0) x , e j(1) x , . . . , e j(N−1) x 
}

here diag {·} represents a diagonal matrix. Then, the received sig-

al in (10) can be represented as [12] 

 = 

(
D n p , ω D 

s �D θ, φε̄α, β

)
x p + 

(
D n c , 0 s �D θ, φε̄α, β

)
x c + e (11) 

here 

 n, ω 

= L N (ω ) F H N L N (−2 πn/N) F N 

s the delay-Doppler matrix and s = [ s (0) , . . . , s (N − 1)] T . The

elay-Doppler matrix is unitary, i.e., D 

H 
n, ω 

D n, ω 

= I N . Using Kro-

ecker product property in [23] , we rewrite (11) as 

 = 

(
D n p , ω D 

�D θ, φ

)(
s �ε̄α, β

)
x p + 

(
D n c , 0 �D θ, φ

)(
s �ε̄α, β

)
x c + e . (12) 

or notation simplicity, we denote A = D n c , 0 �D θ, φ ∈ C 

L ×M , B =
 n p , ω D 

�D θ, φ ∈ C 

L ×M , and S = s �ε̄α, β ∈ C 

M×P , where we drop the

ependency on delay, Doppler, direction of arrival, orientation, and

llipticity. Note that A and B are analogous to a steering matrix

n (2) with delay-Doppler information embedded in them. In addi-

ion, the dimensions of A and B depends on the type of the re-

eiver antenna, and the inner product A 

H A = B 

H B = k I M 

. For an

MVS receiver 1 , L = 6 N, M = 2 N, P = 4 , and k = 2 . Based on the

implified notation (12) can be written as 

 = B S x p + A S x c + e . (13) 

n Eq. (13) , the rank ( S ) = P, i.e., the signal matrix that contains in-

ormation about the waveform and polarization of the transmitted

ignal, is full-rank. By the definition of a snapshot in our signal

odel, we consider two orthogonal polarized waveforms. For ex-

mple, in the case of orthogonal polarization, the first N /2 sam-

les are transmitted with β = 0 and α = −π/ 4 , and the next N /2

amples are transmitted with β = 0 and α = π/ 4 . Weather surveil-

ance radars (WSR-88D) employ alternating transmission of hori-

ontal and vertical polarized waveforms [24] . Due to the orthogo-

al polarization of the transmitted signal, the signal information

atrix attains full-rank. Further, Hochwald and Nehorai [25, Eq.

6.3)] show that the inner product of the signal information ma-

rix for orthogonal polarized waveforms reduces to the form of a

calar times the identity matrix, where the scalar value depends on

he energy of the transmitted waveform. For simplicity, we assume

hat the transmitted signal is unit energy, which reduces the inner

roduct of the signal information matrix to an identity matrix. 

.2. Signal, clutter, and noise statistics 

The non-cooperative nature of the transmitter makes the sig-

al information matrix, S , deterministic and unknown . The receiver

oise vector, e , is a zero mean complex Gaussian random vec-

or with covariance σI L , where we assume σ is known . In other

ords, the noise measurements are independent across different

amples but have the same power. We consider clutter to consist of

any point-like scatters producing incoherent reflections around

he range cell. Because these reflections are random, the aggre-

ate scattering coefficients of the clutter, x c , are assumed to be

istributed as zero mean complex Gaussian random vectors with

nknown covariance matrices denoted as σ. Here, the covariance

atrix depends on the hydrometeors present in the range gate of

nterest. We assume that the receiver thermal noise is indepen-

ent of the clutter. On the other hand, the target is considered

s a man-made object, which is small (point-like) with respect to

he size of the range cell. Hence, the polarimetric scattering ma-

rix of the target is rearranged in a coefficient vector, which is

ssumed deterministic and unknown . Let E { x p } = μ. Based on the
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statistics of the target, clutter, and noise as mentioned above, the

received signal vector at the receiver for a moving target, denoted

as y d ∈ C 

L ×1 is a complex Gaussian distributed as 

H 0 : y d ∼ CN 

(
0 , A S �S H A 

H + σI L 
)

H 1 : y d ∼ CN 

(
B S μ, A S �S H A 

H + σI L 
)
. (14)

Here, d represents the snapshot index, and H 0 and H 1 are hy-

potheses representing the signal model in the absence and pres-

ence of a target, respectively. In (14) , we assume that the tar-

get follows Swerling-I model, where the target reflectivity remains

constant during the dwell time. We denote � = A S �S H A 

H + σI L ∈
C 

L ×L , which represents the true covariance matrix. 

3. Target detection with clutter 

In this section, we develop a detection test to decide if a target

is present in the processed data. In hypothesis testing problems,

when both of the density functions are completely known, then

the Neyman–Pearson (NP) detector is the uniformly most powerful

(UMP) detector. However, in most scenarios, all the parameters of

the density function are not known. In such cases, the parameters

are modeled as random variables with some density function, and

integrated out. This method employs a Bayesian framework to de-

tect a target. Another approach is to use a generalized likelihood

ratio test (GLRT), where the parameters are assumed to be de-

terministic and replaced with their maximum likelihood estimate

(MLE). This method may not always be optimal, but it works well

in practice. We begin by maximizing the loglikelihood functions

under each hypothesis with respect to the unknown parameters. 

3.1. Under H 0 

Based on (14) , the loglikelihood function with respect to the un-

known parameters S and � under the hypothesis H 0 is expressed

as 

ln f 0 ( �, S ) = −D 

[
L ln π + ln | �| + Tr 

{
�−1 

R 0 

}]
, (15)

where D is the number of snapshots, and R 0 is the sample covari-

ance matrix under hypothesis H 0 given as 

R 0 = 

1 

D 

D ∑ 

d=1 

y d y 
H 
d , D � L. (16)

Let ˆ �0 denote the MLE of �. Then, ˆ �0 is given as (see

Appendix A ), 

ˆ �0 = ( A S ) † R 0 ( A S ) † 
H − σ( S H A 

H A S ) . (17)

Replacing � in the loglikelihood function with its MLE, we get 

ln f 0 
(

ˆ �0 , S 
)

= −D 

[
P + L ln π + (L − P ) ln σ + ln 

∣∣S H A 

H R 0 A S 
∣∣

− ln 

∣∣S H A 

H A S 
∣∣ + σ−1 Tr 

{
P ⊥ AS R 0 

}]
, (18)

where P ⊥ AS is a projection matrix expressed as 

P ⊥ AS = I L − P AS = I L − A S 
(
S H A 

H A S 
)−1 

S H A 

H 
. (19)

The derivation of the likelihood function in (18) is shown in

Appendix A . The sample covariance matrix converges to the

true covariance matrix in an asymptotic sense, as the number

of snapshots increases [26,27] . In Appendix B , we show that

σ−1 Tr { P ⊥ AS R 0 } ≈ (L − P ) for a large number of snapshots. Therefore,

the loglikelihood function can be further simplified: 

ln f 0 
(

ˆ �0 , S 
)

≈ −D 

[
L + L ln π + (L − P ) ln σ + ln 

∣∣S H A 

H R 0 A S 
∣∣

− ln 

∣∣S H A 

H A S 
∣∣]. (20)
ext, we maximize (20) with respect to S . We notice that only the

ast two terms of (20) are dependent on S . The matrix A 

H R 0 A is

ermitian positive definite for D � L . Let U �U 

H be the orthogonal

actorization of A 

H R 0 A , where U contains orthogonal column vec-

ors such that U U 

H = I M 

, and � is a diagonal matrix with eigenval-

es of A 

H R 0 A as its diagonal entries, arranged in decreasing order.

e partition the orthogonal column vectors of U as [ U 1 U 2 ] ,

uch that U 1 ∈ C 

M×P , U 2 ∈ C 

M×(L −P) . In Appendix C , we show that

he MLE of S , denoted as ˆ S = U 1 , where U 1 represents the eigen-

ectors corresponding to P largest eigenvalues of A 

H R 0 A . Substitut-

ng the MLE of S into the loglikelihood function in (20) , we get 

n f 0 
(

ˆ �0 , ̂  S 
)

= −D 

[
L + L ln π + (L − P ) ln σ + ln 

∣∣U 

H 
1 A 

H R 0 A U 1 

∣∣
− ln 

∣∣U 

H 
1 A 

H A U 1 

∣∣]. 
he inner product of the delay-Doppler steering matrix A and the

rthonormal columns of U 1 is a constant. Hence, the loglikelihood

unction can be written as 

n f 0 
(

ˆ �0 , ̂  S 
)

= −D 

[
L + L ln π + (L − P ) ln σ + ln 

∣∣U 

H 
1 A 

H R 0 A U 1 

∣∣
− ln | k I P | 

]
. (21)

.2. Under H 1 

Following a similar approach, the loglikelihood function with

espect to the unknown parameters �, μ, and S under hypothe-

is H 1 in (14) , is expressed as 

n f 1 ( �, μ, S ) = −D 

[
L ln π + ln | �| + Tr 

{
�−1 

R 1 

}]
, (22)

here R 1 is the sample covariance matrix under H 1 , given as 

 1 = 

1 

D 

D ∑ 

d=1 

( y d − B S μ)( y d − B S μ) H , D � L. (23)

et ˆ �1 denote the MLE of �. Then 

ˆ �1 is given as (see

ppendix A ) 

ˆ 
1 = ( A S ) † R 1 ( A S ) † 

H − σ( S H A 

H A S ) . (24)

eplacing � with its MLE in the loglikelihood function, we get 

ln f 1 
(

ˆ �1 , μ, S 
)

= −D 

[
P + L ln π + (L − P ) ln σ + ln 

∣∣S H A 

H R 1 A S 
∣∣

− ln 

∣∣S H A 

H A S 
∣∣ + σ−1 Tr 

{
P ⊥ AS R 1 

}]
. 

(25)

gnoring the scaling parameter and substituting (23) , the last term

n (25) can be rewritten as 

r 
{

P ⊥ AS R 1 

}
= Tr 

{
P ⊥ AS R 1 P 

⊥ 
AS 

}
(26)

= Tr 
{

P ⊥ AS R 0 

}
− Tr 

{
P ⊥ AS ̄y μ

H S H B 

H P ⊥ AS 

}
− Tr 

{
P ⊥ AS B S μȳ 

H 
P ⊥ AS 

}
+ Tr 

{
P ⊥ AS B S μμH S H B 

H P ⊥ AS 

}
+ Tr 

{
P ⊥ AS ̄y ̄y 

H 
P ⊥ AS 

}
− Tr 

{
P ⊥ AS ̄y ̄y 

H 
P ⊥ AS 

}
(27)

here ȳ = (1 /D ) 
∑ D 

d=1 y d . In (26) we used the idempotent prop-

rty of a project matrix, and in (27) we add and subtract

r 
{

P ⊥ AS ̄y ̄y 
H P ⊥ AS 

}
. Rewriting (27) in compact form we get 

r 
{

P ⊥ AS R 1 

}
= Tr 

{
P ⊥ AS ( R 0 − ȳ ̄y 

H ) 
}

+ Tr 
{

P ⊥ AS ( ̄y − B S μ)( ̄y − B S μ) H 
}

(28)

≈ Tr 
{

P ⊥ AS ( R 0 − ȳ ̄y 
H ) 

}
= Tr 

{
P ⊥ AS R 2 

}
(29)

here R 2 � ( R 0 − ȳ ̄y H ) = (1 /D ) 
∑ D 

d=1 ( y d − ȳ )( y d − ȳ ) H . For large

umber of snapshots, the sample mean ȳ and the sample covari-
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nce matrix R 2 converges in probability to true mean and true co-

ariance [26, Chapter 2] , i.e., ȳ → B S μ and R 2 → �. Therefore, the

ast term in (28) goes to zero for large number of snapshots. Then,

he loglikehood function is given as 

n f 1 
(

ˆ �1 , μ, S 
)

≈ −D 

[
P + L ln π + (L − P ) ln σ + ln 

∣∣S H A 

H R 1 A S 
∣∣

− ln 

∣∣S H A 

H A S 
∣∣ + σ−1 Tr 

{
P ⊥ AS R 2 

}]
. (30) 

onsidering again the trace approximation for the last term in

30) (see Appendix B ), the loglikelihood function becomes 

n f 1 
(

ˆ �1 , μ, S 
)

≈ −D [ L + L ln π + (L − P ) ln σ

+ ln 

∣∣S H A 

H R 1 A S 
∣∣ − ln 

∣∣S H A 

H A S 
∣∣]. (31) 

ext, we maximize (31) with respect to μ. As can be seen from

31) , only the fourth term depends on μ. The MLE of μ is given as

see Appendix D ) 

ˆ = ( B S ) 
† ȳ (32) 

ubstituting (32) into (23) , we get 

 1 = 

1 

D 

D ∑ 

d=1 

( y d − P BS ̄y )( y d − P BS ̄y ) 
H = R 2 + P ⊥ BS ̄y ̄y 

H 
P ⊥ BS (33) 

sing (33) , we further simplify the expression ln | S H A 

H R 1 AS | as fol-

ows: 

n 

∣∣S H A 

H R 1 A S 
∣∣ = ln 

∣∣S H A 

H 
(
R 2 + P ⊥ BS ̄y ̄y 

H 
P ⊥ BS 

)
A S 

∣∣
= ln 

(
1 + ȳ 

H 
P ⊥ BS A S 

(
S H A 

H R 2 A S 
)−1 

S H A 

H P ⊥ BS ̄y 

)
+ ln 

∣∣S H A 

H R 2 A S 
∣∣ (34) 

≈ ln 

∣∣S H A 

H R 2 A S 
∣∣ (35) 

here, in (34) we used the determinant identity in [28, Theo-

em 13.3.8] , and the approximation in (35) is due to the conver-

ence of sample mean to true mean in probability, for large num-

er of snapshots, i.e., P ⊥ BS ̄y → P ⊥ BS B S μ = 0 . Hence, the loglikelihood

unction obtained after substituting the MLE of μ is given as 

n f 1 
(

ˆ �1 , ˆ μ, S 
)

≈ −D [ L + L ln π + (L − P ) ln σ

+ ln 

∣∣S H A 

H R 2 A S 
∣∣ − ln 

∣∣S H A 

H A S 
∣∣]. (36) 

e maximize (36) with respect to S , following similar steps as

e did for hypothesis H 0 . Let V ϒV 

H be the orthogonal factoriza-

ion of A 

H R 2 A , where V represents the orthogonal column vectors

uch that V V 

H = I M 

, and ϒ is a diagonal matrix with eigenval-

es of A 

H R 2 A as its diagonal entries, arranged in descending order.

e partition the orthogonal column vectors of V as 
[

V 1 V 2 

]
,

uch that V 1 ∈ C 

M×P , V 2 ∈ C 

M×(L −P) . Then, the MLE of S is given

s V 1 (see Appendix C ), where V 1 represents the eigenvectors cor-

esponding to the P largest eigenvalues of A 

H R 2 A . Substituting the

LE of S into the loglikelihood function, we get 

n f 1 
(

ˆ �1 , ˆ μ, ̂  S 
)

= −D [ L + L ln π + (L − P ) ln σ

+ ln 

∣∣V 

H 
1 A 

H R 2 A V 1 

∣∣ − ln | k I P | 
]
. (37) 

.3. GLRT detector 

The GLRT detector is written as 

max 
{ �, μ, S } 

ln f 1 ( �, μ, S ) − max 
{ �, S } 

ln f 0 ( �, S ) 

= ln f 1 
(

ˆ �1 , ˆ μ, ̂  S 
)

− ln f 0 
(

ˆ �0 , ̂  S 
)
≷ ln κ. (38) 

ubstituting (21) and (37) into (38) , the GLRT is given as 

 

[
ln 

∣∣U 

H 
1 A 

H R 0 A U 1 

∣∣ − ln 

∣∣V 

H 
1 A 

H R 2 A V 1 

∣∣] ≷ ln κ. (39) 
λ
sing (29) and [28, Theorem 13.3.8] , the first term in (39) can be

ritten as 

n 

∣∣U 

H 
1 A 

H R 0 A U 1 

∣∣ = ln 

∣∣U 

H 
1 A 

H 
(
R 2 + ȳ ̄y 

H 
)
A U 1 

∣∣
= ln 

(
1 + ȳ 

H 
A U 1 

(
U 

H 
1 A 

H R 2 A U 1 

)−1 
U 

H 
1 A 

H ȳ 

)
+ ln 

∣∣U 

H 
1 A 

H R 2 A U 1 

∣∣. (40) 

ubstituting (40) in (39) , the GLRT can be rewritten as 

D 

[ 
ln 

(
1 + ȳ 

H 
A U 1 

(
U 

H 
1 A 

H R 2 A U 1 

)−1 
U 

H 
1 A 

H ȳ 

)
+ ln 

∣∣U 

H 
1 A 

H R 2 A U 1 

∣∣ − ln 

∣∣V 

H 
1 A 

H R 2 A V 1 

∣∣] ≷ ln κ. (41) 

he distribution of the GLRT statistic for the measurement model

oes not have a closed-form expression for a finite number of

napshots. Hence, we explore the asymptotic performance charac-

eristics of the GLRT statistic. The matrices U 1 and V 1 represent the

igenvectors corresponding to the P largest eigenvalues of A 

H R 0 A

nd A 

H R 2 A , respectively. When we have a large number of snap-

hots, both R 0 and R 2 converge to the true covariance matrix, �.

ote that the true covariance matrix of the observation vector un-

er each hypothesis is the same. Hence, the eigenvectors corre-

ponding to P largest eigenvalues of A 

H R 0 A and A 

H R 2 A also con-

erge. Based on this asymptotic property of sample covariance ma-

rix we replace V 1 with U 1 in (41) . Then, the GLRT statistic can be

ritten as 

 

[ 
ln 

(
1 + ȳ 

H 
A U 1 

(
U 

H 
1 A 

H R 2 A U 1 

)−1 
U 

H 
1 A 

H ȳ 

)] 
≷ ln κ. (42) 

et z d = U 

H 
1 A 

H y d . Then the mean of the random variable z d 
s U 

H 
1 A 

H B S μ and the covariance is U 

H 
1 A 

H �A U 1 . The new sam-

le mean and sample covariance are z̄ = (1 /D ) 
∑ D 

d=1 z d and R z =
(1 /D ) 

∑ D 
d=1 ( z d − z̄ )( z d − z̄ ) H , respectively. Hence, the decision test

tatistic in (42) is given as 

 ln 

(
1 + ̄z 

H 
R 

−1 
z z̄ 

)
≷ ln κ. (43) 

emoving the logarithm and ignoring the constant term, the equiv-

lent test statistic is 

= z̄ 
H 

R 

−1 
z z̄ . (44) 

.4. Distribution of test statistic 

We present the probability density function of the test statis-

ic in (44) for the bistatic scenario under both H 0 and H 1 . It fol-

ows from [29, Corollary 5.2.1] , that the test statistic follows a F-

istribution denoted by F ν1 , ν2 
(λ) , where, ν1 = 2 P and ν2 = 2(D −

 ) represents degrees of freedom, and λ is the non-centrality pa-

ameter. The factor 2 in the expressions of the degree of freedom

akes into account that the data is complex. The test statistic in

44) is distributed as follows: 

2(D − P ) 

2 P 
ξ ∼

{
F 2 P, 2(D −P) , under H 0 

F 2 P, 2(D −P) (λ) , under H 1 
. (45) 

n the derivation of the test statistic in (44) , we considered a large

umber of snapshots. As the number of snapshots D increases, the

egrees of freedom ν2 also increases, and the F-distribution F ν1 , ν2 

an be approximated as a chi-square distribution denoted by χ2 
ν1 

30, Chapter 2] . The distribution of the test statistic in (45) can be

xpressed as 

(D − P ) ξ ∼
{
χ2 

2 P , under H 0 

χ2 
2 P (λ) , under H 1 

, (46) 

here the non-centrality parameter is given as [29, Corol-

ary 5.2.1] 

= 2 D μH S H B 

H A U 1 

[
U 

H 
1 A 

H �A U 1 

]−1 
U 

H 
1 A 

H B S μ (47) 
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Table 1 

Dual-polarized transmitter specifications with velocity as 

the characteristic of interest. 

Parameter Value 

Carrier frequency 2 .7 GHz 

Bandwidth 0 .63 MHz 

Beam width 0 .96 °
Pulse width 1 . 5 μ s (short pulse) 

Pulse repetition frequency 322 − 1282 Hz 

Range of Observation 230 km (for velocity) 

Range resolution 250 ms (for velocity) 

Orientation and ellipticity ( π /4, 0) and (−π/ 4 , 0) 

0 10 20 30 40 50 60 70 80 90
0

0.02

0.04

0.06

0.08

0.1

0.12

Fig. 1. Normalized histogram (empirical PDF) and the analytic PDF under H 0 and 

H 1 , with SNR = −10 dB , CNR = 10 dB , number of samples per snapshot N = 8 , and 

number of snapshots D = 200 . 
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The non-centrality parameter depends on the transmitted signal,

the target scattering coefficients, the covariance of clutter, and the

receiver noise. The exact detection performance is given by P FA =
Q χ2 

2 P 
(δ) , where δ is the detection threshold for a given probabil-

ity of false alarm, and Q χ2 
2 P 

is the right-tail probability for a chi-

squared distribution with 2 P degrees of freedom. In addition, the

expression of P FA does not depend on the transmitted signal, clut-

ter, and noise, indicating the CFAR of the detector. The probability

of detection, P D = Q χ2 
2 P 

(λ) (δ) , where Q χ2 
2 P 

(λ) is the right-tail prob-

ability of a random variable with a non-central chi-squared distri-

bution with 2 P degrees of freedom (see [30] ). The proposed detec-

tion test does not require secondary data to estimate the clutter

parameters. The unknown parameters are estimated by using only

the data that correspond to the range gate of interest. Hence, the

performance of the test would not be affected if the clutter is spa-

tially inhomogeneous. 

In case of a stationary target, we observe no Doppler shift from

the target. Assuming that the delay observed from the target and

clutter are approximately the same, i.e., n p ≈ n c , the observed

delay-Doppler matrix D n p , 0 ≈ D n c , 0 . Due to this assumption, we

can replace B with A in the expression of the non-centrality pa-

rameter in (47) . On further simplifying (47) by expanding � and

replacing S with its MLE, U 1 , the estimated non-centrality parame-

ter of a stationary target, which is denoted by ˆ λ, is given as 

ˆ λ = 2 k 2 D μH 
[
k 2 � + k σI P 

]−1 
μ = 

2 D 

σ

[ 

μH 

(
�

σ
+ 

1 

k 
I P 

)−1 

μ

] 

. (48)

The expression of the non-centrality parameter in (48) is a

weighted inner product of the target scattering coefficients, where

the weights depend on the number of snaphsots, clutter covari-

ance, and the receiver noise. In the absence of clutter, the expres-

sion in (48) simplifies to a simple energy-based detector [30, Chap-

ter 7] . 

In the proposed signal model, we assumed a hypothesized tar-

get to be present in the range cell of interest. Therefore, at every

range cell, the test statistic in (44) is to be computed for a range

of target delay and Doppler values, building a bank of detectors.

However, computing the test statistic in (44) is not computation-

ally expensive. It involves computing the singular value decompo-

sition of an M × M Hermitian symmetric matrix, where M = 2 N

depends on the sampling rate of the receiver, and inverting a P

× P matrix, where P ≤ 4 depends on the number of polarization

channels considered in the signal model. 

4. Numerical simulations 

In this section, we illustrate the performance of our proposed

detector presented in Section 3 . For simplicity, we consider a 2-D

scenario, where both the receiver and target are in the same plane.

Our analysis can be easily extended to a 3-D scenario. In our sim-

ulation setup, we consider a dual-polarized weather radar (WSR-

88D) [16] as our signal of opportunity. The WSR-88D is a pulse-

Doppler system that measures three primary characteristics of the

radar echoes: reflectivity, Doppler (radial) velocity, and width of

the Doppler spectrum. Parameters such as range of observation,

number of pulses averaged, and range resolution vary depending

on the characteristics of interest [16, Appendix A] . The transmitter

is attached to a platform rotating at a constant rotation rate. The

signal parameters of the transmitted signal are listed in Table 1 . 

The transmitter, target, and the receiver are located in the x − y

plane, and consequently the elevation angle of the receiver is set

to θ = 0 . In our simulations, we consider the transmitter to be

located at (−3 . 46 km , 2 km ) and an EMVS receiver located at

(3 . 46 km , 2 km ) . Let τ represent the pulse width of the complex
nvelope signal s ( t ), with no phase or frequency modulation. Then,

ased on the Nyquist sampling criterion, the sampling frequency

enoted by f s = 2 / τ. However, in our signal model, we collect N /2

amples from each polarization at a single range cell, which re-

uires the receiver to operate at a sampling rate of f s = 1 / �t =
/ τ. The target is illuminated by the weather radar and the scatter-

ng coefficients of the target depend on the azimuth view angle of

he receiver. In our simulation, we assume the target to be located

t the origin, moving with a velocity of 30 m/s in the positive y -

xis direction. Due to this, we set the azimuth angle of the receiver

o φ = π/ 6 . The velocity of the target lies within the range of max-

mum Doppler radial velocity that can be measured by a weather

adar (for WSR-88D the maximum Doppler unambiguous radial ve-

ocity is 32 m/s). The received signal contains reflections from the

arget and the stationary clutter surrounding the target. In addi-

ion, we use the following definitions of signal-to-noise ratio ( SNR )

nd clutter-to-noise ratio ( CNR ) in our simulation results: 

NR (in dB ) = 10 log 10 

μH S H S μ

σ
(49)

NR (in dB ) = 10 log 10 

Tr { �} 
σ

. (50)

he target scattering coefficients are generated from a CN (0 , 1)

istribution. Similarly, the entries of the clutter covariance matrix

re generated from a CN (0 , 1) distribution, and then scaled to sat-

sfy the required SNR and CNR , respectively. 

.1. Distribution of the test statistic 

We now validate the distribution of the test statistic obtained

or the GLRT detector described in Section 3 . Fig. 1 shows the

mpirical distribution and the analytic distribution of the detec-

or test statistic under each hypothesis, in the presence of clut-

er. In our simulation, the target scattering coefficients and the

ransmitted signal were generated randomly, and fixed, such that
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Fig. 2. ROC curves for different values of SNR . The solid line plot and the scattered 

plot indicate the probability of detection obtained from the analytical distribution 

and the empirical distribution, respectively. 
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Fig. 3. Probability of detection curves across different values of SNR values keeping 

the probability of false alarm constant. The solid line plot and the dashed line plot 

indicate the probability of detection obtained from the analytical distribution for a 

moving (MT) and a stationary target (ST), respectively. The scatter plots outlining 

the solid and dashed line curves indicate the probability of detection obtained from 

the empirical distribution for the given value of probability of false alarm. 
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NR = −10 dB . The number of samples in each snapshot N = 8 and

he number of snapshots D = 200 . Note that in our definition of

napshot, we sample two pulses of different polarization. We plot

he normalized histogram generated from 10 5 Monte Carlo runs of

he test statistic in (44) , by randomly generating clutter scattering

oefficients in each run, such that CNR = 10 dB . As shown in Fig. 1 ,

he empirical distribution closely matches the analytic distribution

btained in (46) . 

.2. Detector performance 

In this section, we demonstrate the sensitivity of the proposed

etector. In Fig. 2 , we plot the receiver operating characteristic

ROC) for 100 different realizations of the test statistic in (44) . The

OC curve is obtained by taking the average of the probability of

etection for 100 different realizations of μ, �, and S . The proba-

ility of detection for the empirical distribution is computed from

he normalized histogram plot obtained from 10 5 Monte Carlo runs

f the test statistic in (44) , by randomly generating clutter scat-

ering coefficients in each run, such that CNR = 10 dB . The perfor-

ance of the detector improves as the SNR increases. 

In Fig. 3 , we demonstrate the performance of the detector for a

oving target and a stationary target. Here, we select CNR = 10 dB ,

 = 8 , D = 200 , and plot the probability of detection for 50 differ-

nt realizations of μ, �, and S . For a moving target, we consider

he target to be present at a distance of 100 ms offset in the neg-

tive y -axis direction from the center of the range cell under con-

ideration located at origin, and moving with a velocity of 10 m/s

n positive y -axis direction. Due to this assumption, n p � = n c , and

orrespondingly the entries of the inner product of B 

H A in the ex-

ression of the non-centrality parameter in (47) are not close to

dentity matrix. For a stationary target, we consider the target to

e present in the center of the range cell under test. Therefore, for

 stationary target, n p = n c , and correspondingly the inner product

f B 

H A is equal to k I M 

. Thus, the probability of detection, which de-

ends on the system settings through the non-centrality parameter

s larger for a stationary target. We note that, under certain condi-

ions, the entries of the inner product of B 

H A are close to Identity

atrix even in the case of a moving target. For example, when the

arget is in the center of the range cell, then n p = n c . Then, the

nner product of B 

H A is given as 

(D n c , ω D 
�D θ, φ) H (D n c , 0 �D θ, φ) = (D 

H 
n c , ω D 

D n c , 0 �k I M 

) 
here 

 

H 
n c , ω D 

D n c , 0 = F H N L N (2 πn c /N) F N L 
H 
N (ω D ) L N (0) F H N L N (−2 πn c /N) F N . 

f the entries of the diagonal matrix L H N (ω D ) are close to one, then

 

H A will be close to Identity matrix. In such scenarios, the prob-

bility of detection is approximately the same for a moving target

nd a stationary target using the proposed approach. 

Next, we looked at the performance of the detector under vary-

ng CNR values for a target located at the center of the range cell

oving with a velocity of 30 m/s in positive y -axis direction. For

 weather radar, depending on the hydrometeor present in a given

ange gate, the clutter intensity varies accordingly [18, Chapter 7] .

n Fig. 4 a and b, we plot the probability of detection for 100 dif-

erent realizations of μ, �, and S , across a wide range of SNR

nd CNR values. We keep the probability of false alarm fixed at

 F A = 10 −3 , number of samples per snapshot N = 8 , and the num-

er of snapshots D = 200 constant, across different SNR and CNR

alues. We observe that the detector performance under both ana-

ytical and empirical distribution match closely. Further, we notice

 transition phase at SNR = −10 dB , for both analytical and empir-

cal, probability of detection plots. 

In Fig. 5 , which addresses target detection of an active radar

nd assumes complete knowledge of the signal information ma-

rix S . We call this detector the oracle detector. Also, in [22] A = B ,

herefore, in the simulation environment, we consider a hypoth-

sized stationary target present in the center of the range cell

f interest. Here, we select CNR = 5 dB , N = 8 , and D = 500 . The

ashed lines indicate the probability of detection for a given prob-

bility of false alarm across different values of SNR obtained from

urtado and Nehorai [22, Eq. (24)] , where the complete knowl-

dge of the signal information matrix, S , is known at the receiver.

he solid lines indicate the probability of detection obtained from

46), where the signal information matrix, S is estimated from the

ignal-dependent clutter �. It can be seen that the proposed detec-

or closely matches the performance of the oracle detector, how-

ver, it is important to note that the oracle detector in [22] does

ot require large number of snapshots. 

Finally, we looked at the performance of the detector under

ifferent number of snapshots. In the proposed model, the signal

ubspace is unknown and is estimated from the covariance ma-
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Fig. 4. Probability of detection for different values of SNR and CNR . The probability of false alarm is fixed at 10 −3 . The number of samples per snapshot N = 8 and number 

of snapshots D = 200 . The probability of detection is represented using gray scale pixels, where the darker pixels indicate higher values of probability of detection. 
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Fig. 5. Probability of detection curves across different values of SNR values keeping 

the probability of false alarm constant. The solid line plot and the dashed line plot 

indicate the probability of detection obtained from the analytical distribution for 

stationary target when the signal information matrix is known and unknown, re- 

spectively. The filled and hollow marker scatter plots outlining the solid and dashed 

line curves indicate the probability of detection obtained from the empirical distri- 

bution for unknown and known signal information matrix, respectively. 
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Fig. 6. Probability of detection curves across different SNR values for varying num- 

ber of snapshots. The solid line plot and the scattered plot indicate the probability 

of detection obtained from the analytical distribution and the empirical distribution, 

respectively. The number of samples per snapshot N = 8 and number of snapshots 

D = { 50 , 100 , 200 } , with a background CNR = 10 dB . 
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trix of the recorded data contaminated with clutter. When we have

small number of snapshots, the expression of the test statistic in

(41) cannot be simplified to (42) , due to which the test statistic

does not follow a chi-square distribution. To demonstrate this, we

keep the simulation environment same as the previous experiment

and only vary the number of snapshots. In Fig. 6 , we notice that

the performance of the detector improves as the number of snap-

shots increases. The proposed detectors in (44) is an energy detec-

tors. As the number of snapshots increases, the integration time to

compute the probability of detection increases, thereby improving

the performance of the detector. 

5. Conclusions 

In this work, we presented a GLRT-based detector for a passive

radar network using EMVS, with weather radar as signal of op-

portunity, when the direct path signal from the transmitter is not

available. We considered the effect of signal-dependent clutter in

the surveillance channel, and derived a GLRT detector for a bistatic

scenario. The exact distribution of the test statistic under the hy-
othesis is presented. The CFAR property of the detector is demon-

trated in (44) , where the expression of the test statistic under the

ull-hypothesis is not dependent on the transmitted signal, clutter,

nd noise. Using numerical simulations, the analytic expressions

f the detector test-statistic under different settings are validated.

urthermore, we studied the performance of the proposed detector

n different bistatic scenarios, by varying the network settings such

s, number of snapshots, SNR , and CNR . 

In the future, we will consider a passive multistatic system

ormed by several receivers. Then, we will develop a centralized

pproach for target detection in the presence of inhomogeneous

ignal-dependent clutter. We will also address passive radar net-

orks in the presence of multiple transmitters of opportunity. In

ddition, we will extend our analysis to multi-target and extended

arget scenario in a passive radar network. 

ppendix A. MLE of the clutter covariance matrix 

Here, we derive the MLE of the unknown clutter covariance ma-

rix of the concentrated loglikelihood functions in (15) and (22) us-

ng the results of [31, Theorem 1.1] and [22] . The concentrated log-
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ikelihood function under hypothesis H i , where i ∈ {0, 1} indicates

he hypothesis, is given by 

n f i ( �) = −D 

[
L ln π + ln | �| + Tr 

{
�−1 

R 

}]
(A.1) 

here R represents the corresponding sample covariance matrix.

et ˆ � be the MLE of �, then based on [31, Theorem 1.1, Eq. (8)] 

ˆ = ( A S ) † R ( A S ) † 
H − σ( S H A 

H A S ) . (A.2) 

ubstituting ˆ � in (A.1) and further simplifying, we get [31, Eq.

24)] 

n f i ( ̂  �) = −D 

[ 
P + L ln π + ln 

∣∣S H A 

H A S 
∣∣ + (L − P ) ln σ

+ ln 

∣∣∣( A S ) † R ( A S ) † 
H 
∣∣∣ + σ−1 Tr 

{
P ⊥ AS R 

}] 
. (A.3) 

xpanding the fifth term in (A.3) and further simplifying we get

he following expression of the loglikelihood function: 

n f i ( ̂  �) = −D 

[ 
P + L ln π − ln 

∣∣S H A 

H A S 
∣∣ + (L − P ) ln σ

+ ln 

∣∣S H A 

H R A S 
∣∣ + σ−1 Tr 

{
P ⊥ AS R 

}] 
(A.4) 

ppendix B. Trace approximation 

In this Appendix, we show that σ−1 Tr 
{

P ⊥ AS R 

}
, where R is a

ample covariance matrix of the hypothesis under consideration,

oes to a finite value when we consider a large number of snap-

hots. Using asymptotic statistics, it can be shown that the sam-

le covariance matrix converges to the true covariance for a large

umber of snapshots [26, Chapter 2] . We replace the sample co-

ariance matrix R in σ−1 Tr 
{

P ⊥ AS R 

}
with �, and then expand as

ollows: 

−1 Tr 
{

P ⊥ AS R 

}
≈ σ−1 Tr 

{
P ⊥ AS �

}
, for D � L 

= σ−1 Tr { � − P AS �} . (B.1) 

xpanding P AS and substituting � = A S �S H A 

H + σI L , we get 

 AS � = A S 
(
S H A 

H A S 
)−1 

S H A 

H 
(
A S �S H A 

H + σI L 
)

= A S 
(
S H A 

H A S 
)−1 (

S H A 

H A S 
)
�S H A 

H + σA S 
(
S H A 

H A S 
)−1 

S H A 

H 

= A S �S H A 

H + σA S 
(
S H A 

H A S 
)−1 

S H A 

H 

= � − σI L + σP AS (B.2) 

ubstituting (B.2) into (B.1) , we get 

−1 Tr 
{

P ⊥ AS R 

}
≈ σ−1 Tr { � − � + σI L − σP AS } 
= Tr 

{
P ⊥ AS 

}
= L − P. (B.3) 

here the last equality is due to the fact that the eigenvalues

f a projection matrix are either ones or zeros and Tr 
{

P ⊥ AS 

}
=

ank 
(
P ⊥ AS 

)
= L − P . 

ppendix C. MLE of the signal information matrix 

We represent (20) and (36) in a general form, and determine a

eneral closed form expression of MLE of S , which maximizes [
ln 

∣∣S H A 

H R A S 
∣∣ − ln 

∣∣S H A 

H A S 
∣∣], (C.1) 

here R is a sample covariance matrix of the hypothesis under

onsideration. We use the following Lemma [32] to find S , that

aximizes (C.1) 

r 
{

C −1 D 

}
≥ n 

∣∣C −1 D 

∣∣ 1 
n (C.2) 
here C is a positive definite matrix of size n , and D is any ar-

itrary positive definite matrix of size n . Taking the logarithm on

oth sides and rearranging the terms we get 

n | C | − ln | D | ≥ n ln n − n ln Tr 
{

C −1 D 

}
. (C.3) 

he inequality in (C.3) does not change by taking logarithm on

oth sides because logarithm is a monotonically increasing func-

ion. Rewriting (C.1) using (C.3) , we get 

ln 

∣∣S H A 

H R A S 
∣∣ − ln 

∣∣S H A 

H A S 
∣∣

≥ P ln P − P ln Tr 

{ (
S H A 

H R A S 
)−1 

S H A 

H A S 

} 

(C.4) 

here rank 
(
S H A 

H R A S 
)

= rank 
(
S H A 

H A S 
)

= rank ( S ) = P . The matrix

 

H RA is positive definite (for D > L ) and is a Hermitian ma-

rix; hence, it can be factorized orthogonally. Let P �1 / 2 �1 / 2 
P H 

e the orthogonal factorization of A 

H RA , such that P P H = I M 

and

= diag { ω 1 , · · · , ω M 

} with ω 1 ≥ · · · ≥ ω M 

. In the left hand side

f (C.4) , the columns of S are multiplied with the P dominant

igenvectors of A 

H RA . In order to determine S for which equality

s achieved in (C.4) , we rewrite Tr { ( S H A 

H R A S ) −1 S H A 

H A S } as fol-

ows: 

Tr 

{ (
S H A 

H R A S 
)−1 

S H A 

H A S 

} 

= k Tr 

{ 

S 
(
S H P �1 / 2 �1 / 2 

P H S 
)−1 

S H 
} 

, 

(C.5) 

here we have used the identity A 

H A = k I M 

. Let us define K �
1 / 2 

P H S . Rewriting (C.5) , we get 

r 

{ (
S H A 

H R A S 
)−1 

S H A 

H A S 

} 

= k Tr 

{ 

�−1 / 2 
K 

(
K 

H K 

)−1 
K 

H �−1 / 2 
} 

= k Tr 
{
�−1 

H 

}
(C.6) 

here we have used the orthonormal property P P H = I M 

, and

efined H � K 

(
K 

H K 

)−1 
K 

H . Here, H takes the form of a projec-

ion matrix, such that rank ( H ) = rank ( K ) = rank ( S ) = P < M. Then,

C.6) can be expressed as 

 Tr 
{
�−1 

H 

}
= k 

M ∑ 

i =1 

h i,i 

ω i 

≥ k 

P ∑ 

i =1 

h i,i 

ω i 

, (C.7) 

here h i , i and ω i represent the diagonal entries of the matrix H

nd �, respectively. The eigenvalues of H are either ones or zeros

ecause H takes the form of a projection matrix, 0 ≤ h i , i ≤ 1, and

r { H } = rank ( H ) = P . We want the dominant eigenvalues to appear

n the right hand side of (C.4) . Hence, in order to achieve equality

n (C.4) , H takes the form 

 = 

[
I P 0 P,M−P 

0 M−P,P 0 M −P,M −P 

]
= K 

(
K 

H K 

)−1 
K 

H 
. (C.8) 

here 0 N 1 ,N 2 represents a zero matrix of size N 1 × N 2 . We

artition P such that, P � 

[
P 1 P 2 

]
, where P 1 ∈ C 

M×P and

 2 ∈ C 

M ×(M −P) are orthogonal column vectors that satisfy P H 1 P 1 =
 P , P H 2 P 2 = I M−P , P H 1 P 2 = 0 P,M−P , and P H 2 P 1 = 0 M−P,P . Similarly, we

artition �1 / 2 = diag { �1 / 2 
1 

, �1 / 2 
2 

} , where �1 / 2 
1 

∈ C 

P×P and �1 / 2 
2 

∈
 

(M−P) ×(M−P) . Then K can be expressed as 

 = �1 / 2 
P H S = 

[
�1 / 2 

1 0 

0 �1 / 2 
2 

][
P H 1 S 

P H 2 S 

]

= 

[
�1 / 2 

1 P H 1 S 

�1 / 2 
2 P H 2 S 

]
� 

[
K 1 

K 2 

]
. (C.9) 

ince K 

H K is full rank, it is invertible and hence not equal to zero

atrix. In order to satisfy (C.8) , 

 2 = �1 / 2 
P H 2 S = 0 . (C.10) 
2 
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The column vectors of P 1 and P 2 are orthogonal. Hence, (C.10) is

satisfied when S = P 1 T , where P 1 represents the eigenvectors cor-

responding to the P largest eigenvalues of A 

H RA , and T is some

unitary transform matrix that satisfies T H T = T T H = I P . Then K

can be expressed as follows: 

K = 

[
K 1 

K 2 

]
= 

[
�1 / 2 

1 T 
0 

]
. (C.11)

Substituting K in (C.8) , we get 

H = 

[
I P 0 P,M−P 

0 M−P,P 0 M −P,M −P 

]

= 

[
�1 / 2 

1 T ( T H �1 T ) 
−1 T H �1 / 2 

1 0 P,M−P 

0 M−P,P 0 M −P,M −P 

]
. (C.12)

The first block matrix in (C.12) is equal to I P when T = I P . Hence,

S = P 1 , which represents the eigenvector corresponding to the P

largest eigenvalues of A 

H RA . On substituting S = P 1 in (C.4) , the

equality condition is true when all the P dominant eigenvalues of

A 

H RA are equal. 

Appendix D. MLE of the target scattering matrix coefficients 

In this section, we derive the MLE of μ in (31) . The only term

that depends on μ in (31) is ln | S H A 

H R 1 AS |. Since, the logarithm of

a determinant is a log-concave function, a maximum value exists.

In order find the maximum value, we take the first order derivate

of ln | S H A 

H R 1 AS | and equate it to zero. For simplicity in notation

while calculating the derivative, we denote Q = ( S H A 

H R 1 A S ) −1 and

M = A S . Using the derivative rule d 
d μ

ln | C | = Tr { C −1 d 
d μ

C } , we get 

∂ 

∂ μ
ln 

∣∣M 

H R 1 M 

∣∣ = Tr 

{
Q 

∂ 

∂ μ
M 

H R 1 M 

}
= Tr 

{
M Q M 

H ∂ 

∂ μ
R 1 

}
. 

(D.1)

Let W = M Q M 

H , and by expanding R 1 , we get 

R 1 = R 0 − ȳ μH N 

H − N μȳ 
H + N μμH N 

H 
. 

where N = B S . Since μ is a complex vector, we take the partial

derivative with respect to �{ μ} and �{ μ} , where � and � repre-

sent the real and imaginary parts of the complex vector, respec-

tively. Therefore, the derivative can be expressed as 

Tr 

{
W 

∂ 

∂ μ
R 1 

}
= Tr 

{
W 

∂ R 1 

∂�{ μ} 
}

− j Tr 

{
W 

∂ R 1 

∂�{ μ} 
}

. (D.2)

We use the following derivative rules [33] to further simply the

(D.2) : 

∂ Tr { μ} 
∂�{ μ} = 1 j 

∂ Tr { μ} 
∂�{ μ} = −1 (D.3)

∂ Tr { G μ} 
∂�{ μ} = G 

T j 
∂ Tr { G μ} 
∂�{ μ} = −G 

T (D.4)

∂ Tr { G μH } 
∂�{ μ} = G j 

∂ Tr { G μH } 
∂�{ μ} = G (D.5)

for some arbitrary matrix G . Expanding the first term in

Eq. (D.2) gives the following: 

Tr 

{
W 

∂ R 1 

∂�{ μ} 
}

= Tr 

{
W 

∂ 

∂�{ μ} 
(
R 0 − ȳ μH N 

H − N μȳ 
H + N μμH N 

H 
)}

. (D.6)
he first term in (D.6) does not depend on μ, whereas each of the

emaining three terms can be further simplified using the deriva-

ive rules expressed in (D.3) –(D.5) as follows: 

Tr 

{
−N 

H W ̄y ∂ μH 

∂�{ μ} 
}

= −N 

H W ̄y , 

Tr 

{
− ȳ 

H 
W N ∂ μ

∂�{ μ} 
}

= −( ̄y H W N ) T , 

r 

{
N 

H W N ∂( μμH ) 

∂�{ μ} 
}

= ( μH N 

H W N ) T + ( N 

H W N μ) . 

ombining all the terms, we get 

r 

{
W 

∂ 

∂�{ μ} R 1 

}
= −( N 

H W ̄y ) − ( ̄y H W N ) T 

+ ( μH N 

H W N ) T + ( N 

H W N μ) . (D.7)

n a similar way, expanding the second term in (D.2) gives 

j Tr 

{
W 

∂ 

∂�{ μ} R 1 

}

= j Tr 

{
W 

∂ 

∂�{ μ} 
(
R 0 − ȳ μH N 

H − N μȳ 
H + N μμH N 

H 
)}

. 

e ignore the first term because it does not depend on μ. Simpli-

ying each of the remaining three terms further using the deriva-

ive rules in (D.3) –(D.5) we get, 

j Tr 

{
−N 

H W ̄y ∂ μH 

∂�{ μ} 
}

= −N 

H W ̄y , 

j Tr 

{
− ȳ 

H 
W N ∂ μ

∂�{ μ} 
}

= ( ̄y H W N ) T , 

j Tr 

{
N 

H W N ∂( μμH ) 

∂�{ μ} 
}

= ( N 

H W N μ) − ( μH N 

H W N ) T . 

ombining all the terms, we get 

j Tr 

{
W 

∂ 

∂�{ μ} R 1 

}
= −( N 

H W ̄y ) + ( ̄y H W N ) T 

−( μH N 

H W N ) T + ( N 

H W N μ) . (D.8)

ubstituting (D.7) and (D.8) into (D.2) , we get 

r 

{
W 

∂ 

∂ μ
R 1 

}
= 2( μH N 

H W N ) T − 2( ̄y H W N ) T . (D.9)

quating (D.9) to zero, we get 

( ̄y − N μ) H W N = 0 . 

he matrix WN cannot be a zero matrix. So, it follows that the MLE

f μ, denoted as ˆ μ, is given as 

ˆ = N 

† ȳ = ( B S ) † ȳ . (D.10)
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