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We propose a method to detect a target in a bistatic passive polarimetric radar network, with weather
surveillance radar as our illuminator of opportunity (I0). We build our signal model using electromagnetic
vector sensors (EMVS) as the receiver, which captures the reflections from a point-like target present
in the scene of interest, surrounded with strong clutter. We develop a generalized likelihood ratio test
(GLRT) detector that is robust to inhomogeneous clutter. We also develop a maximum likelihood (ML)
solution to extract the signal subspace from the received data contaminated by the clutter interference.
We provide the exact distribution of the test statistic for the asymptotic case and evaluate its performance
loss by considering a reduced set of data. The proposed GLRT method is a constant false alarm rate (CFAR)
detector, which makes it robust against the inhomogeneous clutter. With the help of numerical results,

Weather radar

we demonstrate the robustness and the limitations of our proposed method.
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1. Introduction

Improving the detection performance of a target can be impor-
tant for military and surveillance operations. Over the last decade,
there has been a growing interest in the radar research commu-
nity to use available signals such as, FM radio waves, television
and audio broadcast signals, and satellite and mobile communica-
tion based signals, as illuminators of opportunity (I0), with one
or several receivers, co-located or distributed randomly, measur-
ing the echoes generated from the target of interest [1-3]. In gen-
eral, a radar network consisting of non-cooperative 10s and one
or several passive receivers is referred to as a passive radar net-
work. Because the network uses available signals of opportunity,
the need to build sophisticated infrastructure for the transmitter
is avoided, thereby reducing the overall cost of the network. In
addition, the receivers are smaller, cheaper, consume less power,
and can be easily deployed, making the network less vulnerable
to electronic counter measures and better able to counter stealth
technology [4]. In this paper, we propose a passive bistatic net-
work, with weather surveillance radar as the 10 and electromag-
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netic vector sensor (EMVS) [5] as the receiver. To the best of our
knowledge, no previous work on passive bistatic radar addressed
employing a weather radar for target detection.

The signal arriving at the receiver consists of the signal from
the non-cooperative transmitter (transmitter-to-receiver), which is
referred to as the reference channel, and the echoes generated by
the reflection of the transmitted signal from the target (target-to-
receiver), which are referred to as the surveillance channel. Con-
ventionally, spatial and temporal filtering techniques isolate the
reference from the surveillance channel. For target detection, the
transmitted signal is estimated from the reference channel, and
cross-correlated with the signal in the surveillance channel. The
resulting function called the cross-ambiguity function (CAF) [6-9],
mimics a matched filter output. The performance of the CAF-based
detector degrades depending on the signal strengths of the surveil-
lance and reference channel. In some scenarios, the direct path sig-
nal that is received via the side lobes of the receiver antenna is
likely to mask the target echoes. In such cases, the Doppler and
delay are estimated either by cancellation of the direct path [10] or
applying the modified cross-correlation method [11]. On the other
hand, when a good estimate of the reference channel signal is not
available, which occurs due to propagation losses, and blockage or
non-availability of the line-of-sight, only the surveillance channel
is considered for target detection.

A generalized likelihood ratio test (GLRT) represents a solution
to the passive radar detection problem when a good estimate of
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the transmitted signal is not available in the reference channel.
Only the surveillance channel is considered, due to which the de-
tector does not require knowledge of reference channel signal-to-
noise ratio (SNR). Hack et al. [12] present a GLRT-based detector
in a passive network of non-overlapping frequency band. A simi-
lar approach is presented in [13,14] for a multistatic passive radar
network. Building on a GLRT framework, Wang and Yazici [15] de-
scribe a passive imaging detector based on electromagnetic signal
modeling.

There are 150 nearly identical dual-polarized S-band Doppler
weather surveillance radars in the USA, with an observation range
of 230 — 460 km and a range resolution of 0.25 —1 km, depend-
ing on the mode of operation [16]. The radar operates accord-
ing to selected scanning pattern using high-power transmitter and
mechanically-rotated antenna, with a minimum and maximum el-
evation angle of 0.5° and 20°, respectively. Due to the high ele-
vation angle and its corresponding volume coverage pattern (VCP),
along with the rotating platform of the transmitter, minimal direct-
path signal is observed by the receiver located on the ground in
the reference channel. However, because of the high sensitivity of
a weather radar [17], the received echoes contain reflections from
clouds and precipitation in addition to the signal of interest. In
such scenarios, the signal models presented in [12,14] cannot be
applied. In general, the target is anisotropic in nature whose scat-
tering parameters are unknown. To overcome these problems, we
develop a polarimetric signal model that considers the effect of in-
homogeneous clutter and noise at the receiver. We make realistic
assumptions in our signal model, where the clutter reflections are
generated from an unknown covariance matrix depending on the
hydrometeors present in the range gate of interest [18, Chapter 7].
We believe we are the first to consider polarization information
for mitigating signal-dependent clutter and improve detection in a
passive radar, with weather surveillance radar as 10. The goal of
this paper is to detect a target, using a passive bistatic radar net-
work of electromagnetic vector sensors and a weather surveillance
radar as the illuminator of opportunity, in the presence of signal-
dependent clutter.

The remainder of this paper is organized as follows. Signal,
clutter, and noise models are explained in detail in Section 2. In
Sections 3.1-3.3, we derive a detector based on the GLRT frame-
work and provide a closed form expression of the distribution of
the test statistic in Section 3.4. The expression of the probability
of false alarm does not depend on the transmitted signal, clutter,
and receiver noise, which indicates the proposed GLRT method is
a constant false alarm rate (CFAR) detector. In Section 4, we an-
alyze the performance of the proposed detector through numer-
ical simulations. We vary the system settings, such as the num-
ber of snapshots, and the clutter-to-noise ratio (CNR), and we de-
termine the performance of the detector by plotting the curves
for the probability of detection. Finally, the paper is summarized
in Section 5.

Notations: Bold uppercase and calligraphic uppercase letters de-
note matrices. Bold lowercase letters denote vectors. Scalars are
denoted by both lowercase and uppercase letters. For any complex
matrix A, we use AT, AH A A~! AT Tr{A}, and |A| to denote the
transpose, conjugate-transpose, conjugate, inverse, pseudo-inverse,
trace, and determinant of A, respectively. Additionally, Iy represent
identity of dimension N. The matrices P, and P,ﬁ denotes projec-
tion matrix of A and its orthogonal projection matrix, respectively.
® stands for the Kronecker product, — denotes convergence, and
I-]| represents the ¢,-norm. Further, j represents +/—1, CA stands
for complex normal distribution, % and 3 denote the real-part and
imaginary-part of a complex number, respectively, and E[-] repre-
sents the expectation operator.

2. Signal model and statistics
2.1. Signal model

We consider a dual-polarized weather radar located at t =
[tx, ty.t,]T € R3 as the illuminator of opportunity in our signal
model. The polarimetric representation of the transmitted complex
bandpass signal is given by QawBs(t)eJQct where

cosa

sina cos

Q“‘:|:—sinoc cosa]’ wﬁ:l:jsinﬁﬂ]’ M
o and P represent the orientation and ellipticity of polarization
of the transmitted signal, respectively, and ¢ is the carrier fre-
quency. The signal s(t) is the complex baseband signal, t < [0, T],
where T/2 is the pulse repetition interval (PRI) of a dual-polarized
transmitter, which sends sequentially two pulses of orthogonal po-
larization. Exploiting the polarimetric information provides useful
information about the target, such as its geometry, material, and
orientation. In order to capture this polarimetric information, we
need to use diversely polarized antennas. One popular category
of such antennas includes the electromagnetic vector sensors [5],
where the electric dipoles and electric loops are aligned within
the three axes of the coordinate system. Let (6, ¢) denote the
azimuth and elevation angle, respectively, of a hypothesized tar-
get located at p = [px, py, pz]" € R? and traveling with a velocity
P = [Px, Py, P2IT € R, as seen by the receiver. The steering matrix
of an electromagnetic vector sensor denoted as Dy 4, € R6%2 can be
parameterized as [5]

—sin® —cos0sin¢
cos 6 —sinOsin ¢
. 0 cos ¢
Do = —cosOsind sin ¢ : 2)
—sinBsin ¢ —cos¢
cos ¢ 0

Special cases of the steering matrix in (2) are the tripole antenna
[19] and the classical polarization radar using vertical and hori-
zontal linear polarization. The target and the background clutter
are characterized by their scattering matrices, which depend on
the angle of view and the frequency of the transmitted signal. Let
Sp € C?*2 and S¢ € C?*? denote the hypothesized target and clutter
scattering matrix coefficients, respectively, as seen by the receiver
located at coordinates r = [rx, 1y, r.]7 € R3, where Sp and S are pa-
rameterized as [20]

hh hv hh hv
Sp=[f,‘v’h "P} and sc=["c "c]. (3)

%% vh vV
P Op O¢ O

hh vV
(o and o7

coefficients, and the variables c‘(’g o and 0'(’[‘)’ o) Tepresent the cross-

polar scattering coefficients. The <complex envelope at the output
of the quadrature receiver can be expressed as

Y(t) = Dy S, QWps(t — Tp)e/le %™

The coefficients ¢ represent the co-polar scattering

+D9_¢SCQOLW§S(I' — tc)e—ch‘Ec + e(t), (4)
where
o _S[@-p'p (@-0h
D= — )
c | lir=pl lp—t]
and 7y Ir=pl o=t 5)

Here, 1, represents the time it takes for the signal to travel from
the transmitter to the target, and from the target to the receiver.
Qp represents the Doppler shift in the signal, c is the speed of the
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propagation of the electromagnetic wave, and e(t) is the complex
baseband thermal noise. The Doppler frequency shift in (5) is com-
puted based on the relative motion between the transmitter and
the target, and the target and receiver in a passive bistatic radar
geometry [21]. In Eq. (4), we assume that the target moves with
a certain velocity, p, and the Doppler frequency shift produced by
the clutter is zero. The signal model in (4) can be easily extended
to a known non-zero Doppler frequency shift produced by the clut-
ter. Since the weather radar operates at high elevation angles, the
type of clutter we are dealing with in our signal model is a me-
teorological hydrometeor. Also, it is reasonable to assume that the
receiver has a good prior knowledge of the Doppler frequency shift
produced by clutter through Level II and Level Il weather radar
data products, which are available for commercial applications and
updated regularly. Further, we assume that t. is known and is ap-
proximately equal to the time it takes for the transmitted signal
to travel from the transmitter to the center of the range cell, and
from the center of the range cell to the receiver. Based on this as-
sumption, tp = Tc + ATp, where AT, accounts for the shift in the
target’s position from the center of the range cell. Compensating
for the absolute phase term e~/ the received signal in (4) can
be written as

Y(t) = Dy S, QWps(t — Tp)e/ e i%Aw

+ Dy ¢S Q Wps(t — Tc) + e(t). (6)
We introduce the vectorized scattering matrix coefficients, xp =
eSSk [ohh oWV ol o¥]T and xc = [0l o}V, oIV, oYM, that de-
note the target and clutter reflectivity coefficients, respectively. Let

€4 L eq, e]" = Qwg denote the polarization vector. We define
polarization matrix as [22]

- _ | & 0 € 0

Ga'B - |:0 € 0 €1i|. (7)
where ranl((éuiﬁ) = 2. Then, the received signal in (6) can be
rewritten as

Y(t) = Dy €, gXps(t — Tp)e/ Pt + Dy &, pXes(t — Tc) +e(t).  (8)
We define a snapshot as a signal that contains both orthogonal po-
larized waveforms of the transmitted signal. The received signal is
sampled at every At seconds, where At represents the fast-time
sampling interval. Let the number of samples in each range gate
be N, where N is even. We define s[n] of a continuous-time sig-
nal s(t) as s[n] =s(nAt). We denote the time delay and Doppler
shift in the sampled signal domain as np = 1,/At, nc = T¢/At, and
wp = QpAt, respectively. After sampling, the signal received by
the EMVS at time nAt becomes

yin] = Dy 4&q pXps[n — nple/™>" + Dy &, gXesn —nc] +e[n].  (9)
If the time samples are stacked in a vector, (9) can be written as
¥ = (5(np, 0p)®Dy &4, p)Xp + (S(11c, 0)@Dy o€, ) Xc + € (10)
where

y =[Ol .yl ... yIN— 11T,
§(ny,, wp) = [s(=np)e/ @ . s(N-1- np)ej(N*””JD]T,
s(ne,0) = [s(=n¢),....s(IN—1—no)]",
e [e[0]". e[1]",....e[N-1]"]".

Let Fy € CN*N denote the unitary discrete Fourier transform (DFT)
matrix such that the (m, n)" element is

1 ‘2n
[Flp = —=e/&m™

JN

for m,n=0,...,N—1. Let Ly(x) € CN*N denote a diagonal matrix
such that

Ly(x) = diag {e/@% /¥ elN-1x}

where diag{-} represents a diagonal matrix. Then, the received sig-
nal in (10) can be represented as [12]

y= (Dn,,.mDS@De,q;éa,ﬁ)Xp + (Dnc,oS®De,¢€a,s)Xc +e (11)

where
Dnw = Ly(w)FyLy(—27n/N)Fy

is the delay-Doppler matrix and s=[s(0),...,s(N—1)]". The
delay-Doppler matrix is unitary, i.e., D# wDn,o =Iy. Using Kro-
necker product property in [23], we rewrite (11) as

y= ('an,wD®D9v¢) (s®écx,ﬁ)xp + (Dnc_otg)De’d)) (S®€a,ﬁ)xc +e. (12)

For notation simplicity, we denote A =D, o®Dy, € C*M, B=
Dy wp®Dg ¢ € ClxM_ and S = S®€yp € CM*P_\where we drop the
dependency on delay, Doppler, direction of arrival, orientation, and
ellipticity. Note that A and B are analogous to a steering matrix
in (2) with delay-Doppler information embedded in them. In addi-
tion, the dimensions of A and B depends on the type of the re-
ceiver antenna, and the inner product AYA = BB = kI;. For an
EMVS receiver!, L=6N, M =2N, P=4, and k = 2. Based on the
simplified notation (12) can be written as

y =BSx, + ASx. +e. (13)

In Eq. (13), the rank(S) = P, i.e., the signal matrix that contains in-
formation about the waveform and polarization of the transmitted
signal, is full-rank. By the definition of a snapshot in our signal
model, we consider two orthogonal polarized waveforms. For ex-
ample, in the case of orthogonal polarization, the first N/2 sam-
ples are transmitted with § =0 and o = —7/4, and the next N/2
samples are transmitted with B = 0 and o = 7 /4. Weather surveil-
lance radars (WSR-88D) employ alternating transmission of hori-
zontal and vertical polarized waveforms [24]. Due to the orthogo-
nal polarization of the transmitted signal, the signal information
matrix attains full-rank. Further, Hochwald and Nehorai [25, Eq.
(6.3)] show that the inner product of the signal information ma-
trix for orthogonal polarized waveforms reduces to the form of a
scalar times the identity matrix, where the scalar value depends on
the energy of the transmitted waveform. For simplicity, we assume
that the transmitted signal is unit energy, which reduces the inner
product of the signal information matrix to an identity matrix.

2.2. Signal, clutter, and noise statistics

The non-cooperative nature of the transmitter makes the sig-
nal information matrix, S, deterministic and unknown. The receiver
noise vector, e, is a zero mean complex Gaussian random vec-
tor with covariance ol;, where we assume o is known. In other
words, the noise measurements are independent across different
samples but have the same power. We consider clutter to consist of
many point-like scatters producing incoherent reflections around
the range cell. Because these reflections are random, the aggre-
gate scattering coefficients of the clutter, x;, are assumed to be
distributed as zero mean complex Gaussian random vectors with
unknown covariance matrices denoted as o. Here, the covariance
matrix depends on the hydrometeors present in the range gate of
interest. We assume that the receiver thermal noise is indepen-
dent of the clutter. On the other hand, the target is considered
as a man-made object, which is small (point-like) with respect to
the size of the range cell. Hence, the polarimetric scattering ma-
trix of the target is rearranged in a coefficient vector, which is
assumed deterministic and unknown. Let E{xp} = . Based on the

T For a tripole antenna L = 3N, M = 2N, P =4, and k = 1. For a classical polariza-
tion radar using vertical and horizontal linear polarization L = 2N, M = 2N, P = 4,
and k=1.
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statistics of the target, clutter, and noise as mentioned above, the
received signal vector at the receiver for a moving target, denoted
as yq € Ct*1 is a complex Gaussian distributed as

Ho : ¥q ~ CN(0.ASES"A" + ol;)
M1 :yq ~ CN(BSp,ASZSYA" + ol,). (14)

Here, d represents the snapshot index, and #y and #; are hy-
potheses representing the signal model in the absence and pres-
ence of a target, respectively. In (14), we assume that the tar-
get follows Swerling-I model, where the target reflectivity remains
constant during the dwell time. We denote T = ASZS"A" 1 I, <
CLxL, which represents the true covariance matrix.

3. Target detection with clutter

In this section, we develop a detection test to decide if a target
is present in the processed data. In hypothesis testing problems,
when both of the density functions are completely known, then
the Neyman-Pearson (NP) detector is the uniformly most powerful
(UMP) detector. However, in most scenarios, all the parameters of
the density function are not known. In such cases, the parameters
are modeled as random variables with some density function, and
integrated out. This method employs a Bayesian framework to de-
tect a target. Another approach is to use a generalized likelihood
ratio test (GLRT), where the parameters are assumed to be de-
terministic and replaced with their maximum likelihood estimate
(MLE). This method may not always be optimal, but it works well
in practice. We begin by maximizing the loglikelihood functions
under each hypothesis with respect to the unknown parameters.

3.1. Under Hy

Based on (14), the loglikelihood function with respect to the un-
known parameters S and X under the hypothesis #, is expressed
as

In fo(2.8) = —D[LIn7 +In|T| +Tr {T~'Ro}]. (15)

where D is the number of snapshots, and Ry is the sample covari-
ance matrix under hypothesis %, given as

1 D
ROZBZydy‘;, D> L. (16)
d=1

Let ¥, denote the MLE of ¥. Then, ¥, is given as (see
Appendix A),

$ = (AS)Ry (AS)T" — 5(S"A"AS). (17)

Replacing ¥ in the loglikelihood function with its MLE, we get

In fo(%o,S) = —D[P+LIn7 + (L—P)Ino + In|S"A"RoAS|
—In|S"A"AS| + o~ Tr {P5sRo } . (18)

where Py is a projection matrix expressed as

Pis=I —Pps =1, — AS(S”A”AS)_lsHA”. (19)

The derivation of the likelihood function in (18) is shown in
Appendix A. The sample covariance matrix converges to the
true covariance matrix in an asymptotic sense, as the number
of snapshots increases [26,27]. In Appendix B, we show that
o~ 1Tr{PssRo} ~ (L — P) for a large number of snapshots. Therefore,
the loglikelihood function can be further simplified:

In fo(%o.8) ~ —D[L+LIn7 + (L - P) Inc + In |S"A"RoAS|
—In|s"A"As]]. (20)

Next, we maximize (20) with respect to S. We notice that only the
last two terms of (20) are dependent on S. The matrix AHRyA is
Hermitian positive definite for D > L. Let UQU™ be the orthogonal
factorization of A#RyA, where U contains orthogonal column vec-
tors such that UU™ =I,;, and  is a diagonal matrix with eigenval-
ues of AMRyA as its diagonal entries, arranged in decreasing order.
We partition the orthogonal column vectors of Uas [ U; U, |,
such that U; € CM*P_ U, e CM*(-P)_In Appendix C, we show that
the MLE of S, denoted as § = U;, where U; represents the eigen-
vectors corresponding to P largest eigenvalues of AHRyA. Substitut-
ing the MLE of S into the loglikelihood function in (20), we get

In fo(%0.8) = —D[L+LIn7 + (L — P) Inc + In |UYA"R,AU |
—In|UYA"AU,|].

The inner product of the delay-Doppler steering matrix A and the
orthonormal columns of U; is a constant. Hence, the loglikelihood
function can be written as

In fo(%o.8) = —D[L+LIn7 + (L — P) Inc + In |UYA"R,AU |
—In|kip|]. (21)
3.2. Under H,4
Following a similar approach, the loglikelihood function with

respect to the unknown parameters X, p, and S under hypothe-
sis Hq in (14), is expressed as

Infi(2.n.8) = —D[LIn7 +In|T|+Tr {T~'Ry }]. (22)

where Ry is the sample covariance matrix under #4, given as
1L u

R, = Bdg]:(yd—BSu)(yd—BSu) ., D>»L (23)

Let ¥, denote the MLE of ¥. Then £, is given as (see
Appendix A)

S, = (AS)'R, (AS)"" — o(s"A" AS). (24)
Replacing X with its MLE in the loglikelihood function, we get
In f;(£1.w.8) = —D[P+Lin7 + (L— P) Ino + In |S"A"R, AS|
—In|S"A"AS| + o~ Tr {PxsRy }].
(25)

Ignoring the scaling parameter and substituting (23), the last term
in (25) can be rewritten as

Tr {PasRy | = Tr {PysR: Pys } (26)

= Tr {PysRo} — Tr { Posyn"S"B Py}
—Tr {PxsBSWY" Py} + Tr {PisBSp S B™ Py }
+Tr {Pis3y"'Pas | — Tr {Pisyy" Pys } (27)
where y = (1/D) ZdD=1}’d~ In (26) we used the idempotent prop-
erty of a project matrix, and in (27) we add and subtract
Tr { Pxs¥¥"' P45 }. Rewriting (27) in compact form we get
Tr {PxsR } = Tr {Pxs(Ro — 39™") } + Tr {Pxs (7 — BSW) (7 — BSp)" }
(28)

~ T {Ps (Ro — 35} = Tr PR, (29)

where R, & (Ro — 3¥") = (1/D) X0_; (Vg — ) /g — )". For large
number of snapshots, the sample mean y and the sample covari-
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ance matrix R, converges in probability to true mean and true co-
variance [26, Chapter 2], i.e., y — BS\ and R, — TI'. Therefore, the
last term in (28) goes to zero for large number of snapshots. Then,
the loglikehood function is given as

In f; (£1.w.8) ~ D[P +LIn7 + (L — P) Inc + In |S"A"R, AS|
—In|S"A"AS| + o~ Tr {PxsRy } . (30)
Considering again the trace approximation for the last term in
(30) (see Appendix B), the loglikelihood function becomes
Inf;(£1.n.8) ~ -D[L+LIn7 + (L—P)Ino
+1n |SYA"R,AS| — In|s"A"As]]. (31)
Next, we maximize (31) with respect to p. As can be seen from

(31), only the fourth term depends on . The MLE of u is given as
(see Appendix D)

i = (BS)'y (32)
Substituting (32) into (23), we get

1L _ _ _
Ri= 5> 00— Posh) s~ Posp) =Ry + Pisiy'Pis (33
d=1

Using (33), we further simplify the expression In |S"A"R,AS| as fol-
lows:
In |SYA"R,AS| = In|S"A™ (R, + P55y Py ) AS|
—In (1 + jr”PBlSAS(S”A”RzAS)_1S”A”PBlsjr>
+1In |S"A"R,AS| (34)

~ In|S"A"R,AS| (35)

where, in (34) we used the determinant identity in [28, Theo-
rem 13.3.8], and the approximation in (35) is due to the conver-
gence of sample mean to true mean in probability, for large num-
ber of snapshots, i.e., Pisy — PgBSp = 0. Hence, the loglikelihood
function obtained after substituting the MLE of w is given as

Infi(£1.&.S) ~ -D[L+LIn7 + (L-P)Ino
+1n |sYA"R,AS| — In |S"A"As]]. (36)

We maximize (36) with respect to S, following similar steps as
we did for hypothesis 7. Let VYVH be the orthogonal factoriza-
tion of AMR,A, where V represents the orthogonal column vectors
such that VVP =1, and Y is a diagonal matrix with eigenval-
ues of AFR,A as its diagonal entries, arranged in descending order.
We partition the orthogonal column vectors of V as [ vV, V, ]
such that V; € CMxP| v, ¢ CM*x(-P) Then, the MLE of § is given
as V; (see Appendix C), where V; represents the eigenvectors cor-
responding to the P largest eigenvalues of AYR,A. Substituting the
MLE of S into the loglikelihood function, we get

Infi(£1.&.8) = -D[L+LIn7 + (L-P)Ino
+1n |VYA"RAV, | — In [kIp|]. (37)

3.3. GLRT detector
The GLRT detector is written as

max In f; (X, n,S) — maxIn fo (X, S
(max, fi(Z. 1. S) max fo(Z.S)

=Infi(£1. f.8) — In fo(%o.8) = Ink. (38)
Substituting (21) and (37) into (38), the GLRT is given as
D[In [UYA"RoAU, | — In [VYA"R,AV |] = Ink. (39)

Using (29) and [28, Theorem 13.3.8], the first term in (39) can be
written as

In [UYA"RoAU, | = In |UYA" (R, +33")AU, |
—In (1 + AU, (u’jA”RzAU])’lUﬁ’A”jz)

+1n |UYA"R,AU, |. (40)
Substituting (40) in (39), the GLRT can be rewritten as

D[ln (1 + AU, (uﬁ’A”RzAul)’]U?A”j/)
+1n |UYA"R,AU, | — In [V{A"R,AV4 |] = Ink. (41)

The distribution of the GLRT statistic for the measurement model
does not have a closed-form expression for a finite number of
snapshots. Hence, we explore the asymptotic performance charac-
teristics of the GLRT statistic. The matrices U; and V; represent the
eigenvectors corresponding to the P largest eigenvalues of A"R,A
and AMR,A, respectively. When we have a large number of snap-
shots, both Ry and R, converge to the true covariance matrix, I.
Note that the true covariance matrix of the observation vector un-
der each hypothesis is the same. Hence, the eigenvectors corre-
sponding to P largest eigenvalues of A"RyA and AFR,A also con-
verge. Based on this asymptotic property of sample covariance ma-
trix we replace V; with Uy in (41). Then, the GLRT statistic can be
written as

D[ln (1 +j"Au, (u’jA”RzAul)‘luq’A”y)] > Ink. (42)

Let z; =UA"y,. Then the mean of the random variable z,
is UA"BS\. and the covariance is UYA"TAU,. The new sam-
ple mean and sample covariance are z = (1/D) ZdD=1Zd and R; =
(1/D) Zf,’:] (24 —2)(zg — 2)M, respectively. Hence, the decision test
statistic in (42) is given as

Din(1+2"R;'z) = Ink. (43)

Removing the logarithm and ignoring the constant term, the equiv-
alent test statistic is

£=2"R;'z. (44)
3.4. Distribution of test statistic

We present the probability density function of the test statis-
tic in (44) for the bistatic scenario under both #Hy and #;. It fol-
lows from [29, Corollary 5.2.1], that the test statistic follows a F-
distribution denoted by Fy, v, (\), where, v; = 2P and v, =2(D —
P) represents degrees of freedom, and A is the non-centrality pa-
rameter. The factor 2 in the expressions of the degree of freedom
takes into account that the data is complex. The test statistic in
(44) is distributed as follows:

2(D— P)E  JF2p200-p);
2P Fopap-py (M),

In the derivation of the test statistic in (44), we considered a large
number of snapshots. As the number of snapshots D increases, the
degrees of freedom v, also increases, and the F-distribution 7y, v,
can be approximated as a chi-square distribution denoted by x%l
[30, Chapter 2]. The distribution of the test statistic in (45) can be
expressed as

under Hg

under H;- (45)

under Hq

under #;’ (46)

_ ~ X3
20 =P~ 1y2 00,

where the non-centrality parameter is given as [29, Corol-
lary 5.2.1]

» = 2DpS"B AU, [U?A”rAw]’]uﬁ’A”Bsu (47)
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The non-centrality parameter depends on the transmitted signal,
the target scattering coefficients, the covariance of clutter, and the
receiver noise. The exact detection performance is given by Ppa =
QX%P(?‘)), where § is the detection threshold for a given probabil-

ity of false alarm, and sz is the right-tail probability for a chi-

squared distribution with 2ZPP degrees of freedom. In addition, the
expression of Pgy does not depend on the transmitted signal, clut-
ter, and noise, indicating the CFAR of the detector. The probability
of detection, Py = Q_, ,(8), where Q_, is the right-tail prob-
3 (M) 3 (M)
ability of a random variable with a non-central chi-squared distri-
bution with 2P degrees of freedom (see [30]). The proposed detec-
tion test does not require secondary data to estimate the clutter
parameters. The unknown parameters are estimated by using only
the data that correspond to the range gate of interest. Hence, the
performance of the test would not be affected if the clutter is spa-
tially inhomogeneous.

In case of a stationary target, we observe no Doppler shift from
the target. Assuming that the delay observed from the target and
clutter are approximately the same, ie., np =~ nc, the observed
delay-Doppler matrix Dy, o &~ Dy, 0. Due to this assumption, we
can replace B with A in the expression of the non-centrality pa-
rameter in (47). On further simplifying (47) by expanding I' and
replacing S with its MLE, Uy, the estimated non-centrality parame-
ter of a stationary target, which is denoted by X, is given as

-1
A = 2k* DAk + kolp "= ? pH (? + }(Ip) w|. (48)
The expression of the non-centrality parameter in (48) is a
weighted inner product of the target scattering coefficients, where
the weights depend on the number of snaphsots, clutter covari-
ance, and the receiver noise. In the absence of clutter, the expres-
sion in (48) simplifies to a simple energy-based detector [30, Chap-
ter 7].

In the proposed signal model, we assumed a hypothesized tar-
get to be present in the range cell of interest. Therefore, at every
range cell, the test statistic in (44) is to be computed for a range
of target delay and Doppler values, building a bank of detectors.
However, computing the test statistic in (44) is not computation-
ally expensive. It involves computing the singular value decompo-
sition of an M x M Hermitian symmetric matrix, where M = 2N
depends on the sampling rate of the receiver, and inverting a P
x P matrix, where P < 4 depends on the number of polarization
channels considered in the signal model.

4. Numerical simulations

In this section, we illustrate the performance of our proposed
detector presented in Section 3. For simplicity, we consider a 2-D
scenario, where both the receiver and target are in the same plane.
Our analysis can be easily extended to a 3-D scenario. In our sim-
ulation setup, we consider a dual-polarized weather radar (WSR-
88D) [16] as our signal of opportunity. The WSR-88D is a pulse-
Doppler system that measures three primary characteristics of the
radar echoes: reflectivity, Doppler (radial) velocity, and width of
the Doppler spectrum. Parameters such as range of observation,
number of pulses averaged, and range resolution vary depending
on the characteristics of interest [16, Appendix A]. The transmitter
is attached to a platform rotating at a constant rotation rate. The
signal parameters of the transmitted signal are listed in Table 1.

The transmitter, target, and the receiver are located in the x —y
plane, and consequently the elevation angle of the receiver is set
to 6 =0. In our simulations, we consider the transmitter to be
located at (—-3.46 km,2 km) and an EMVS receiver located at
(3.46 km,2 km). Let t represent the pulse width of the complex

Table 1
Dual-polarized transmitter specifications with velocity as
the characteristic of interest.

Parameter Value

Carrier frequency 2.7 GHz

Bandwidth 0.63 MHz

Beam width 0.96°

Pulse width 1.5 s (short pulse)

322 -1282 Hz

230 km (for velocity)
250 ms (for velocity)
(7 /4, 0) and (-7 /4,0)

Pulse repetition frequency
Range of Observation
Range resolution
Orientation and ellipticity

0.12 T T T T T T T T
I Monte Carlo: P(&;Ho)
0.1F [ ]Monte Carlo: P(&;H1)| A
i == = Analytical: P(&;Ho)
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w
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Fig. 1. Normalized histogram (empirical PDF) and the analytic PDF under H, and
i, with SNR = —10dB, CNR = 10dB, number of samples per snapshot N =8, and
number of snapshots D = 200.

envelope signal s(t), with no phase or frequency modulation. Then,
based on the Nyquist sampling criterion, the sampling frequency
denoted by f; = 2/t. However, in our signal model, we collect N/2
samples from each polarization at a single range cell, which re-
quires the receiver to operate at a sampling rate of f; =1/At =
N/t. The target is illuminated by the weather radar and the scatter-
ing coefficients of the target depend on the azimuth view angle of
the receiver. In our simulation, we assume the target to be located
at the origin, moving with a velocity of 30 m/s in the positive y-
axis direction. Due to this, we set the azimuth angle of the receiver
to ¢ = 7 /6. The velocity of the target lies within the range of max-
imum Doppler radial velocity that can be measured by a weather
radar (for WSR-88D the maximum Doppler unambiguous radial ve-
locity is 32 m/s). The received signal contains reflections from the
target and the stationary clutter surrounding the target. In addi-
tion, we use the following definitions of signal-to-noise ratio (SNR)
and clutter-to-noise ratio (CNR) in our simulation results:

HcH
SNR (in dB) = 10log; @ (49)
CNR(in dB) = 10log;, Trff}. (50)

The target scattering coefficients are generated from a CA(0, 1)
distribution. Similarly, the entries of the clutter covariance matrix
are generated from a CN (0, 1) distribution, and then scaled to sat-
isfy the required SNR and CNR, respectively.

4.1. Distribution of the test statistic

We now validate the distribution of the test statistic obtained
for the GLRT detector described in Section 3. Fig. 1 shows the
empirical distribution and the analytic distribution of the detec-
tor test statistic under each hypothesis, in the presence of clut-
ter. In our simulation, the target scattering coefficients and the
transmitted signal were generated randomly, and fixed, such that
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Fig. 2. ROC curves for different values of SNR. The solid line plot and the scattered
plot indicate the probability of detection obtained from the analytical distribution
and the empirical distribution, respectively.

SNR = —10dB. The number of samples in each snapshot N = 8 and
the number of snapshots D = 200. Note that in our definition of
snapshot, we sample two pulses of different polarization. We plot
the normalized histogram generated from 10> Monte Carlo runs of
the test statistic in (44), by randomly generating clutter scattering
coefficients in each run, such that CNR = 10dB. As shown in Fig. 1,
the empirical distribution closely matches the analytic distribution
obtained in (46).

4.2. Detector performance

In this section, we demonstrate the sensitivity of the proposed
detector. In Fig. 2, we plot the receiver operating characteristic
(ROC) for 100 different realizations of the test statistic in (44). The
ROC curve is obtained by taking the average of the probability of
detection for 100 different realizations of w, X, and S. The proba-
bility of detection for the empirical distribution is computed from
the normalized histogram plot obtained from 10> Monte Carlo runs
of the test statistic in (44), by randomly generating clutter scat-
tering coefficients in each run, such that CNR = 10dB. The perfor-
mance of the detector improves as the SNR increases.

In Fig. 3, we demonstrate the performance of the detector for a
moving target and a stationary target. Here, we select CNR = 10dB,
N =8, D =200, and plot the probability of detection for 50 differ-
ent realizations of p, X, and S. For a moving target, we consider
the target to be present at a distance of 100 ms offset in the neg-
ative y-axis direction from the center of the range cell under con-
sideration located at origin, and moving with a velocity of 10 m/s
in positive y-axis direction. Due to this assumption, np # nc, and
correspondingly the entries of the inner product of BA in the ex-
pression of the non-centrality parameter in (47) are not close to
Identity matrix. For a stationary target, we consider the target to
be present in the center of the range cell under test. Therefore, for
a stationary target, np = n, and correspondingly the inner product
of B"A is equal to kI;. Thus, the probability of detection, which de-
pends on the system settings through the non-centrality parameter
is larger for a stationary target. We note that, under certain condi-
tions, the entries of the inner product of BYA are close to Identity
matrix even in the case of a moving target. For example, when the
target is in the center of the range cell, then n, = nc. Then, the
inner product of BYA is given as

(Dne.wop®Dg ) (D 0®Dg ) = (DL ) D 0@kl

. —1n-3
MT: P, =10

. —10°3
ST:Pp, =10
X —10°2
——MT: P, =107

. 102
= = ST:Pp,=10

) —10°!
=——MT: P, =10

. —10°!
= = ST: Ppa=10

0 2 4

Fig. 3. Probability of detection curves across different values of SNR values keeping
the probability of false alarm constant. The solid line plot and the dashed line plot
indicate the probability of detection obtained from the analytical distribution for a
moving (MT) and a stationary target (ST), respectively. The scatter plots outlining
the solid and dashed line curves indicate the probability of detection obtained from
the empirical distribution for the given value of probability of false alarm.

where
DI Do =FiLy(2mne/N)FyL (wp)Ly (0)FiLy(—2mn/N)Fy.

Ne, Wp

If the entries of the diagonal matrix Lﬁ(wD) are close to one, then
B"A will be close to Identity matrix. In such scenarios, the prob-
ability of detection is approximately the same for a moving target
and a stationary target using the proposed approach.

Next, we looked at the performance of the detector under vary-
ing CNR values for a target located at the center of the range cell
moving with a velocity of 30 m/s in positive y-axis direction. For
a weather radar, depending on the hydrometeor present in a given
range gate, the clutter intensity varies accordingly [18, Chapter 7].
In Fig. 4a and b, we plot the probability of detection for 100 dif-
ferent realizations of pw, X, and S, across a wide range of SNR
and CNR values. We keep the probability of false alarm fixed at
Pry = 1073, number of samples per snapshot N = 8, and the num-
ber of snapshots D = 200 constant, across different SNR and CNR
values. We observe that the detector performance under both ana-
lytical and empirical distribution match closely. Further, we notice
a transition phase at SNR = —10dB, for both analytical and empir-
ical, probability of detection plots.

In Fig. 5, which addresses target detection of an active radar
and assumes complete knowledge of the signal information ma-
trix S. We call this detector the oracle detector. Also, in [22] A= B,
therefore, in the simulation environment, we consider a hypoth-
esized stationary target present in the center of the range cell
of interest. Here, we select CNR =5dB, N =8, and D = 500. The
dashed lines indicate the probability of detection for a given prob-
ability of false alarm across different values of SNR obtained from
Hurtado and Nehorai [22, Eq. (24)], where the complete knowl-
edge of the signal information matrix, S, is known at the receiver.
The solid lines indicate the probability of detection obtained from
(46), where the signal information matrix, S is estimated from the
signal-dependent clutter I'. It can be seen that the proposed detec-
tor closely matches the performance of the oracle detector, how-
ever, it is important to note that the oracle detector in [22] does
not require large number of snapshots.

Finally, we looked at the performance of the detector under
different number of snapshots. In the proposed model, the signal
subspace is unknown and is estimated from the covariance ma-
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Fig. 4. Probability of detection for different values of SNR and CNR. The probability of false alarm is fixed at 10-3. The number of samples per snapshot N = 8 and number
of snapshots D = 200. The probability of detection is represented using gray scale pixels, where the darker pixels indicate higher values of probability of detection.
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Fig. 5. Probability of detection curves across different values of SNR values keeping
the probability of false alarm constant. The solid line plot and the dashed line plot
indicate the probability of detection obtained from the analytical distribution for
stationary target when the signal information matrix is known and unknown, re-
spectively. The filled and hollow marker scatter plots outlining the solid and dashed
line curves indicate the probability of detection obtained from the empirical distri-
bution for unknown and known signal information matrix, respectively.

trix of the recorded data contaminated with clutter. When we have
small number of snapshots, the expression of the test statistic in
(41) cannot be simplified to (42), due to which the test statistic
does not follow a chi-square distribution. To demonstrate this, we
keep the simulation environment same as the previous experiment
and only vary the number of snapshots. In Fig. 6, we notice that
the performance of the detector improves as the number of snap-
shots increases. The proposed detectors in (44) is an energy detec-
tors. As the number of snapshots increases, the integration time to
compute the probability of detection increases, thereby improving
the performance of the detector.

5. Conclusions

In this work, we presented a GLRT-based detector for a passive
radar network using EMVS, with weather radar as signal of op-
portunity, when the direct path signal from the transmitter is not
available. We considered the effect of signal-dependent clutter in
the surveillance channel, and derived a GLRT detector for a bistatic
scenario. The exact distribution of the test statistic under the hy-

1 T T T T T T

Analytical: D= 50
Monte Carlo: D= 50
= Analytical: D= 100
B Monte Carlo: D= 100
0.7 | |~ Analytical: D = 200
® Monte Carlo: D= 200

08
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0.4

0.3

20 -18 -6 -14 12 -0 8 6 4 2 0
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Fig. 6. Probability of detection curves across different SNR values for varying num-
ber of snapshots. The solid line plot and the scattered plot indicate the probability
of detection obtained from the analytical distribution and the empirical distribution,
respectively. The number of samples per snapshot N = 8 and number of snapshots
D = {50, 100, 200}, with a background CNR = 10dB.

pothesis is presented. The CFAR property of the detector is demon-
strated in (44), where the expression of the test statistic under the
null-hypothesis is not dependent on the transmitted signal, clutter,
and noise. Using numerical simulations, the analytic expressions
of the detector test-statistic under different settings are validated.
Furthermore, we studied the performance of the proposed detector
in different bistatic scenarios, by varying the network settings such
as, number of snapshots, SNR, and CNR.

In the future, we will consider a passive multistatic system
formed by several receivers. Then, we will develop a centralized
approach for target detection in the presence of inhomogeneous
signal-dependent clutter. We will also address passive radar net-
works in the presence of multiple transmitters of opportunity. In
addition, we will extend our analysis to multi-target and extended
target scenario in a passive radar network.

Appendix A. MLE of the clutter covariance matrix

Here, we derive the MLE of the unknown clutter covariance ma-
trix of the concentrated loglikelihood functions in (15) and (22) us-
ing the results of [31, Theorem 1.1] and [22]. The concentrated log-
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likelihood function under hypothesis #;, where i € {0, 1} indicates
the hypothesis, is given by

In f;(£) = -D[LIn7 +In|T| + Tr {T~'R}] (A1)

where R represents the corresponding sample covariance matrix.
Let X be the MLE of X, then based on [31, Theorem 1.1, Eq. (8)]

$ — (As)'R@AS)!" — o(sA"AS). (A2)
Substituting ¥ in (A1) and further simplifying, we get [31, Eq.
(24)]

Infi(%) = —D[P+Llnn +In [s"A"AS| + (L - P)Ino

+In ‘ (AS)TR(AS)TH‘ +o ' Tr {Pf\sk}]. (A3)
Expanding the fifth term in (A.3) and further simplifying we get
the following expression of the loglikelihood function:

Infi($) = —D[P+L1nn ~In[s"A"AS| + (L - P)Ino

+1In|S"A"RAS| + o1 Tr {P;SR}] (A4)

Appendix B. Trace approximation

In this Appendix, we show that o~!Tr {PssR}, where R is a
sample covariance matrix of the hypothesis under consideration,
goes to a finite value when we consider a large number of snap-
shots. Using asymptotic statistics, it can be shown that the sam-
ple covariance matrix converges to the true covariance for a large
number of snapshots [26, Chapter 2]. We replace the sample co-
variance matrix R in o~!Tr {PﬁSR} with T, and then expand as
follows:

o' Tr {PxsR} ~ 7' Tr {PxsT},
=0 'Tr{I — PsT}). (B.1)

for D> L

Expanding Pas and substituting T' = ASESYA" + oI;, we get
PxsT = AS(S"A"AS) "'s"A" (ASES"A" 1 ol,)
— AS(S"A"AS) " (S"A"AS) E5"A" + oAS(S"A"AS) ' SH A"
— ASES"A" + 0AS(S"A"AS) 's" A"

=T — ol + 0Pxs (B.2)
Substituting (B.2) into (B.1), we get
o' Tr{PysR} ~ 67 Tr{T — T + 0l — 0Pys)
=Tr{Py} =L-P. (B.3)

where the last equality is due to the fact that the eigenvalues
of a projection matrix are either ones or zeros and Tr {Pﬁs =

rank (Pys) =L — P.
Appendix C. MLE of the signal information matrix

We represent (20) and (36) in a general form, and determine a
general closed form expression of MLE of S, which maximizes
—[In|s"A"RAS| — In |s"A"As|]. (C1)
where R is a sample covariance matrix of the hypothesis under
consideration. We use the following Lemma [32] to find S, that
maximizes (C.1)

Tr{C"'D} = n|C"'D " (C.2)

where C is a positive definite matrix of size n, and D is any ar-
bitrary positive definite matrix of size n. Taking the logarithm on
both sides and rearranging the terms we get

In|C| —In|D| > ninn—ninTr{C'D}. (C.3)

The inequality in (C.3) does not change by taking logarithm on
both sides because logarithm is a monotonically increasing func-
tion. Rewriting (C.1) using (C.3), we get

In ]s”A”RAs] —In \s”A”As|

> PInP—PInTr { (S”A”RAS)_]S”AHAS} (C4)
where rank (SHAHRAS) = rank (SHAHAS) = rank(S) = P. The matrix
AHRA is positive definite (for D > L) and is a Hermitian ma-
trix; hence, it can be factorized orthogonally. Let pe'2Q2pH
be the orthogonal factorization of APRA, such that PP" =1I,; and
@ =diag{wy, --- , oy} with wq > --- > wpy. In the left hand side
of (C.4), the columns of S are multiplied with the P dominant
eigenvectors of A"RA. In order to determine S for which equality
is achieved in (C.4), we rewrite Tr{(S"A"RAS)-1s"APAS} as fol-
lows:

Tr{(s"A"RAS) 's"a"As| = kTr [s(s"P@ @' ?P1s) s},
(c5)

where we have used the identity AYA = kI, Let us define K 2
Ql/2phs, Rewriting (C.5), we get

Tr{(s"A"RaS) 's"a"As| = kTr [ @ K (1) K2 )
=kTr{Q'H} (C.6)

where we have used the orthonormal property PPY =1I,,, and
defined HéK(KHK)flKH. Here, H takes the form of a projec-
tion matrix, such that rank(H) = rank(K) = rank(§) = P < M. Then,
(C.6) can be expressed as

kTr{sz*H}:k%h>ki@
el A

1

(C.7)

where h; ; and w; represent the diagonal entries of the matrix H
and 2, respectively. The eigenvalues of H are either ones or zeros
because H takes the form of a projection matrix, 0 < h; ; < 1, and
Tr{H} = rank(H) = P. We want the dominant eigenvalues to appear
on the right hand side of (C.4). Hence, in order to achieve equality
in (C.4), H takes the form

I

H= P
Oy_pp
where Oy, y, represents a zero matrix of size Ny x Np. We

partition P such that, Pé[ P, P ] where P; e CM*P and
P, ¢ CMx(M=P) are orthogonal column vectors that satisfy P{P; =

Ip, PIZ-IPZ ZIpr, Pll-lpz = OP.M—Pa and P?P] = OM—P,P' Slmllarly, we
partition 12 = diag{ﬁ}/z, SZ;/Z}, where SZ}/2 e CP*P and 95/2 €
CWM-P)x(M=P) Then K can be expressed as

12
_ol2pHe _ | ¥ 0 )
a2 0|8

B ANES

T @Pis || K |
Since KHK is full rank, it is invertible and hence not equal to zero
matrix. In order to satisfy (C.8),

K, = 2)°Pis=o0.

Opp-p

C8
Om_pM-p (C8)

} = K(K"K)"'K".

(C9)

(C.10)
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The column vectors of P; and P, are orthogonal. Hence, (C.10) is
satisfied when § = P;T, where P; represents the eigenvectors cor-
responding to the P largest eigenvalues of AMRA, and T is some
unitary transform matrix that satisfies T"T = TT" =Ip. Then K
can be expressed as follows:

K || T
[ 8] [%] e
Substituting K in (C.8), we get

Ip Opv—p

H = '

|:0M—P.P On—pyM-—p ]

_| @ty itiel? opyp . (12)

OM_p_p OM—P,M—P

The first block matrix in (C.12) is equal to Ip when T = Ip. Hence,
S = P, which represents the eigenvector corresponding to the P
largest eigenvalues of AMRA. On substituting S = P; in (C.4), the
equality condition is true when all the P dominant eigenvalues of
AHRA are equal.

Appendix D. MLE of the target scattering matrix coefficients

In this section, we derive the MLE of w in (31). The only term
that depends on . in (31) is In |S"AFR, AS|. Since, the logarithm of
a determinant is a log-concave function, a maximum value exists.
In order find the maximum value, we take the first order derivate
of In|S"AFR,AS| and equate it to zero. For simplicity in notation
while calculating the derivative, we denote Q = (S"A"R;AS)~! and
M = AS. Using the derivative rule % In|C| = Tr{c! ﬁc}, we get

a ad ad

— In|MRM| =Tr{Q—M"RM} =Tr { MQM" —R, }.

Fm n‘ 1 ‘ T{Qau 1 } r{ Q Emm 1
(D.1)

Let W = MQM", and by expanding R;, we get

Ri = Ry — yuN" — Ny + Np N,

where N = BS. Since p is a complex vector, we take the partial

derivative with respect to "{p} and I{p}, where % and 3 repre-

sent the real and imaginary parts of the complex vector, respec-
tively. Therefore, the derivative can be expressed as

d oR; . oR;
Tr {WBuR] } =Tr {Wam{p,} } —JjTr {Was{u} }
We use the following derivative rules [33] to further simply the
(D.2):

(D.2)

ATr{n) OTr{n}
IR} =1 a3{n} ! (b-3)
OTr{Gn} 1 OTr{G}

g © oty =7 (D4
oTr{Gu!} OTr{GpH}

ey 3y © (D-2)

for some arbitrary matrix G. Expanding the first term in
Eq. (D.2) gives the following:

9R
Tr{Wam{'l}}

_ 0 = HnyH =H HnH
_Tr{wW(Ro—yu N —Npy" + Npp'NT) 1. (D.6)

The first term in (D.6) does not depend on p, whereas each of the
remaining three terms can be further simplified using the deriva-
tive rules expressed in (D.3)-(D.5) as follows:

NiwyonH Hyy s

T {‘mm} -
-H
y'WNop | . T

T {‘mm} =-G'wN

H H
1o | NWNORT | Nt T 4 (NFWN).

on{m}

Combining all the terms, we get

8 H - -H T
TT{W—R;} = —(N"Wy) — (' WWN
r{ ] 1} (N"Wy) - ("WN)

+ (WANTWN)T + (NTWNR).

In a similar way, expanding the second term in (D.2) gives
j Tr WLR
P st

3 3 ;
= jTr{W———(Ry — yn'"N" — Npy" + N HNH) L.
j { as{u}( o — Ji wy" + N N")

(D.7)

We ignore the first term because it does not depend on . Simpli-
fying each of the remaining three terms further using the deriva-
tive rules in (D.3)-(D.5) we get,

. NwyonH T
. y'WN) B}
e T | - W
H H
T { %ﬁ“) = (N"WNp) — (WN'WN)'.

Combining all the terms, we get

jTr {Was?u}'“ } = —(N"wy) + G"wN)"

—(WINFWN)T + (NTWNp). (D.8)
Substituting (D.7) and (D.8) into (D.2), we get
Tr {Wai&} =2(WAINWN)T - 2G"WN)T. (D.9)

Equating (D.9) to zero, we get
¥ - Nw)WN = 0.

The matrix WN cannot be a zero matrix. So, it follows that the MLE
of i, denoted as [i, is given as

L =Ny = (BS)'y. (D.10)
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